Contents

1 An Overview of Three-Dimensional Integration and FPGAs 1
 1.1 Introduction 1
 1.1.1 More Moore (MM) 2
 1.1.2 More Than Moore (MtM) 3
 1.2 Technological Initiatives and Contribution 5
 1.2.1 Modified Tree-Based Interconnect 7
 1.2.2 Tree-Based Interconnect Partitioning 7
 1.2.3 3D FPGA Design and Implementation Methodology ... 8
 1.2.4 Unified Mesh of Tree Architecture 9
 1.3 Book Organization 10
References .. 11

2 Three-Dimensional Integration: A More Than Moore Technology 13
 2.1 Introduction .. 13
 2.1.1 Opportunities for Three-Dimensional Integration 14
 2.2 Historical Evolution of 3D System Integration 16
 2.3 Vertical Interconnect Technology Development (TSV) 19
 2.4 3D Integration: Manufacturing Methods 21
 2.5 Challenges in 3D Physical Design 24
 2.5.1 Complexity of 3D Physical Design Tools
 and Their Limitations 25
 2.5.2 TSV and Thermal Management 26
 2.5.3 Power and Clock Delivery in 3D-ICs 27
 2.5.4 TSV-Induced Design for Manufacturability Issues 28
 2.5.5 Floorplanning for 3D Circuits 28
 2.5.6 Placement for 3D Circuits 29
 2.5.7 Routing for 3D Circuits 32
 2.6 3D-IC Design Verification 35
 2.7 Summary .. 36
References .. 37
5.2 3D FPGA Architectures: An Overview 96
 5.2.1 FPGA Die Stacking 96
 5.2.2 Monolithic FPGA Implementation 98
5.3 State-of-the-Art: 3D FPGA Implementation 99
5.4 3D FPGA Interconnect Switch 104
5.5 2.5D Integration: High Density Multi-FPGAs 107
 5.5.1 Industrial 2.5D Virtex-7 Interposer-Based FPGAs 109
5.6 Development of 3D Tree-Based FPGA CAD Tools 111
 5.6.1 3D FPGA Physical Design Tools 111
 5.6.2 3D FPGA Architecture Exploration and Optimization 113
5.7 Summary .. 114
References ... 114

6 Three-Dimensional Tree-Based FPGA: Architecture
 Exploration Tools and Technologies 117
 6.1 Introduction ... 117
 6.2 Tree-Based FPGA Interconnect Architecture 118
 6.2.1 2D Tree-Based Interconnect: A Comparison
 with 2D Mesh-Based Interconnect 119
 6.3 Tree-Based Interconnect Partitioning 121
 6.3.1 Vertical Partitioning 122
 6.3.2 Horizontal Partitioning 123
 6.3.3 Through Silicon via (TSV) Modeling 124
 6.4 3D Tree-Based Interconnect Optimization Methodology 125
 6.5 Interconnect Optimization: Homogeneous Tree 126
 6.5.1 The Downward Programmable Network Model 127
 6.5.2 The Upward Programmable Network Model 127
 6.6 Heterogeneous Tree-Based FPGA Architecture 132
 6.6.1 Interconnect Optimization: Heterogeneous Tree 134
 6.7 Critical Path Delay Analysis 136
 6.7.1 Delay Analysis: Homogeneous Tree 136
 6.7.2 Delay Analysis: Heterogeneous Tree 138
 6.8 LUT and Cluster Size Effect on Performance 140
 6.9 Power Optimization 143
 6.10 Summary .. 145
References ... 145

7 Three-Dimensional Thermal Modeling:
 Tools and Methodologies .. 147
 7.1 Introduction: Thermal Fundamentals and Challenges 147
 7.1.1 Heat Generation 148
 7.1.2 Heat Transfer ... 148
 7.1.3 State of the Art: Thermal Modeling 151
7.2 3D Thermal Modeling 151
7.3 Heat Transfer in 3D-ICs 154
7.4 3D Tree-Based FPGA Thermal Analysis Model 156
 7.4.1 3D Thermal Aware Design Techniques 157
 7.4.2 TSV Aware Thermal Control 159
7.5 3D FPGA Thermal Modeling: Capabilities 161
7.6 3D FPGA Thermal Modeling: Simulation Results ... 162
7.7 Summary ... 166
References .. 167

8 Physical Design and Implementation of 3D Tree-Based FPGAs ... 169
 8.1 Introduction .. 169
 8.2 3D Tree-Based FPGA Design Requirements 170
 8.2.1 Why Tree-Based Interconnect and Not Mesh 170
 8.2.2 3D Tree-Based Interconnect: A Requirement for High Logic Density 173
 8.3 2D Physical Design of Tree-Based FPGA 174
 8.3.1 Method 1: Coalesce Scalable Tree-Based
 2D Layout Design 175
 8.3.2 Method 2: Level-Wise 2D Tree Layout Design 176
 8.4 Sub-path Timing Characterization 178
 8.5 3D Design Methodologies 181
 8.5.1 Vertical Partitioning 183
 8.5.2 Horizontal Partitioning 184
 8.5.3 Through Silicon via (TSV) Modeling 186
 8.6 3D Tree-Based FPGA Physical Design Flow 187
 8.6.1 3D Stacking Methodologies 189
 8.6.2 3D FPGA Placement and Route 191
 8.6.3 3D Design Sign Off Analysis 194
 8.7 3D Timing Analysis 196
 8.8 Summary ... 198
References .. 198

9 Three-Dimensional FPGAs: Future Lines of Research 201
 9.1 Introduction: 3D FPGA Research 201
 9.2 Tree-Based Interconnect Partitioning 202
 9.2.1 Vertical Partitioning 202
 9.2.2 Horizontal Partitioning 203
 9.3 3D Physical Design Methodology and CAD Support 203
 9.3.1 Interconnect Optimization Model 204
 9.3.2 3D FPGA Architecture Exploration Tools
 and Technologies 204
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4</td>
<td>Directions for Future Work</td>
<td>205</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Technology Research</td>
<td>206</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Alternative Memory Technology</td>
<td>206</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Monolithic 3D-FPGA</td>
<td>207</td>
</tr>
<tr>
<td>9.4.4</td>
<td>3D Hybrid FPGA (3D-HFPGA): CNT Based FPGA Interconnect</td>
<td>207</td>
</tr>
<tr>
<td>9.4.5</td>
<td>Mesh-of-Tree-based Embedded FPGA</td>
<td>208</td>
</tr>
<tr>
<td>9.4.6</td>
<td>3D FPGA CAD Tools</td>
<td>208</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>208</td>
</tr>
</tbody>
</table>

Appendix A: FPGA CAD Tool: 3D Homogeneous Tree-Based FPGA Architecture and Design Space Exploration | 211 |

Appendix B: FPGA CAD Tool: 3D Heterogeneous Tree-Based FPGA Exploration | 215 |

Appendix C: FPGA CAD Tool: 3D MoT-Based FPGA Exploration | 221 |

Appendix D: 3D Tree-Based FPGA Thermal Modeling | 223 |
Three-Dimensional Design Methodologies for Tree-based FPGA Architecture
Pangracious, V.; Marrakchi, Z.; Mehrez, H.
2015, XXI, 226 p. 113 illus., 102 illus. in color., Hardcover
ISBN: 978-3-319-19173-7