Contents

Preface v

Introduction 1

1 Basic modular distributions 7
 1.1 Eisenstein distributions .. 8
 1.2 Hecke distributions .. 19

2 From the plane to the half-plane 27
 2.1 Modular distributions and non-holomorphic modular forms 28
 2.2 Bihomogeneous functions and joint eigenfunctions of \((\Delta, \text{Eul}^\Pi)\) 37
 2.3 A class of automorphic functions 44

3 A short introduction to the Weyl calculus 51
 3.1 An introduction to the Weyl calculus limited to essentials ... 52
 3.2 Spectral decompositions in \(L^2(\mathbb{R}^2)\) and \(L^2(\Pi)\) 59
 3.3 The sharp composition of homogeneous functions 72
 3.4 When the Weyl calculus falls short of doing the job 79

4 Composition of joint eigenfunctions of \(\mathcal{E}\) and \(\xi \frac{\partial}{\partial x}\) 83
 4.1 Estimates of sharp products \(h_{\nu_1,q_1} \# h_{\nu_2,q_2}\) 84
 4.2 Improving the estimates ... 91
 4.3 A regularization argument 98
 4.4 Computing an elementary integral 100
 4.5 The sharp product of joint eigenfunctions of \(\mathcal{E}, \xi \frac{\partial}{\partial x}\) 105
 4.6 Transferring a sharp product \(h_{\nu_1,q_1} \# h_{\nu_2,q_2}\) to the half-plane ... 115

5 The sharp composition of modular distributions 123
 5.1 The decomposition of automorphic distributions 124
 5.2 On the product or Poisson bracket of two Hecke eigenforms ... 134
 5.3 The sharp product of two Hecke distributions 142
 5.4 The case of two Eisenstein distributions 161
Contents

6 The operator with symbol \mathcal{E}_ν 169
6.1 Extending the validity of the spectral decomposition of a sharp product 169
6.2 The odd-odd part of $\text{Op}(\mathcal{E}_\nu)$ when $|\text{Re } \nu| < \frac{1}{2}$ 171
6.3 The harmonic oscillator .. 172
6.4 The square of zeta on the critical line; non-critical zeros 177

7 From non-holomorphic to holomorphic modular forms 183
7.1 Quantization theory and composition formulas 184
7.2 Anaplectic representation and pseudodifferential analysis 189

Bibliography 197

Index 201
Pseudodifferential Operators with Automorphic Symbols
Unterberger, A.
2015, X, 202 p., Softcover
ISBN: 978-3-319-18656-6
A product of Birkhäuser Basel