Contents

1 Introduction ... 1
 1.1 An Introduction to Chaos ... 1
 1.1.1 A Brief History of Chaos 1
 1.1.2 An Application of Chaos 8
 1.2 An Introduction to Field Programmable Gate Arrays 9
 1.2.1 History of FPGAs .. 9
 1.2.2 Why FPGAs? .. 10
 1.3 Some Basic Mathematical Concepts 11
 1.3.1 Linear Versus Nonlinear Equations 11
 1.3.2 Linear Versus Nonlinear Dynamics 14
 1.3.3 Fixed (Equilibrium) Points 18
 1.3.4 System Behaviour Near Fixed Points 20
 1.4 Conclusions ... 24
Problems ... 25
Lab 1: Introduction to MATLAB and Simulink 27
References ... 28

2 Designing Hardware for FPGAs .. 29
 2.1 The FPGA Development Flow ... 29
 2.2 The Architecture of an FPGA .. 30
 2.3 An Overview of the Hardware and Software Development Platform .. 33
 2.3.1 An Overview of the Terasic DE2-115 Development Board .. 33
 2.3.2 VHDL Primer and Using the Quartus Toolset 37
 2.3.3 Audio Codec Interfacing .. 45
 2.4 Timing Closure .. 49
 2.5 Conclusions ... 50
Problems ... 50
Lab 2: Introduction to Altera FPGA Tools 52
References ... 52
3 Chaotic ODEs: FPGA Examples

3.1 Euler’s Method .. 55
3.2 Specifying Chaotic Systems for FPGAs Using DSP Builder ... 56
 3.2.1 The Lorenz System 56
3.3 Introduction to Functional Simulation and In-System Debugging .. 61
3.4 Functional Simulation of Chaotic Systems 62
3.5 Debugging Using SignalTap 65
 3.5.1 General Concepts—An Illustration
 Using a Simple Example 65
 3.5.2 Debugging the Chen System Using SignalTap 67
3.6 Hardware Debugging Concepts 67
 3.6.1 Observing a Problem 68
 3.6.2 Identifying the Problem 69
 3.6.3 Sources of Errors in VHDL Designs 70
 3.6.4 Design Procedure 71
3.7 Another Example—A Highly Complex Attractor System 72
3.8 Conclusions .. 77

Problems .. 77
Lab 3: ModelSim Simulation, In-System Debugging
 and Physical Realization of the Muthuswamy-Chua System ... 79
References ... 80

4 Bifurcations ... 81
4.1 The Concept of Bifurcations 81
4.2 Routes to Chaos .. 82
 4.2.1 Period-Doubling Route to Chaos 82
 4.2.2 Period-Adding Route to Chaos 83
 4.2.3 Quasi-Periodic Route to Chaos 85
 4.2.4 Intermittency Route to Chaos 85
 4.2.5 Chaotic Transients and Crisis 87
4.3 Bifurcation Experiments with an FPGA 91
 4.3.1 Period-Doubling Route to Chaos 92
 4.3.2 Period-Adding Route to Chaos 93
 4.3.3 Quasi-Periodic Route to Chaos 96
4.4 Conclusions .. 100

Problems .. 100
Lab 4: Displaying Bifurcation Parameter(s) on the LCD 101
References ... 102

5 Chaotic DDEs: FPGA Examples and Synchronization
 Applications ... 103
5.1 An Introduction to Time Delay Systems 103
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Simulating DDEs in Simulink</td>
<td>104</td>
</tr>
<tr>
<td>5.3</td>
<td>FPGA Realization of DDEs</td>
<td>105</td>
</tr>
<tr>
<td>5.4</td>
<td>Applications of (Time Delayed) Chaotic Systems—Synchronization</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>5.4.1 Unidirectional Coupling</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>5.4.2 Bidirectional Coupling</td>
<td>115</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusions</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Lab 5: The Lang-Kobayashi Chaotic Delay Differential Equation.</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>121</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Introduction to MATLAB and Simulink</td>
<td>123</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Chapter 1 MATLAB Code</td>
<td>131</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Chapter 2 VHDL, Simulink DSP Builder and SDC File</td>
<td>135</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Chapter 3 VHDL, MATLAB Code and ModelSim Scripts</td>
<td>149</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Chapter 4 MATLAB Code, VHDL and ModelSim Scripts</td>
<td>163</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Chapter 5 VHDL</td>
<td>193</td>
</tr>
<tr>
<td>Glossary</td>
<td></td>
<td>217</td>
</tr>
<tr>
<td>Solutions</td>
<td></td>
<td>219</td>
</tr>
</tbody>
</table>
A Route to Chaos Using FPGAs
Volume I: Experimental Observations
Muthuswamy, B.; Banerjee, S.
2015, XXIII, 219 p. 131 illus., Hardcover
ISBN: 978-3-319-18104-2