Contents

1 Organic Semiconductors, Conductors, and Superconductors 1
Yue Yue and Bin Zhang
1.1 Introduction ... 1
1.2 Crystal Engineering of Charge-Transfer Complexes 2
 1.2.1 Charge Transfer Salts of AB Type 4
 1.2.2 Charge Transfer Salts of A2B Type 4
 1.2.3 Charge Ordering in Organic ET Compounds 6
1.3 Magnetism in Charge Transfer Salt .. 11
1.4 Dual-Functional, Multifunctional Molecular Crystals 11
1.5 Relationship Between Organic Superconductors
 and Inorganic Superconductors: Resonating
 Valence-Bonding Solids and Jahn–Teller Distortion 14
1.6 Summary .. 15
References ... 16

2 Conducting Polymers .. 23
Yongfang Li
2.1 Molecular Structure of Conducting Polymers 24
 2.1.1 Electronic Structure of Intrinsic
 Conjugated Polymers 25
 2.1.2 Doping Structures of Conducting Polymers 27
 2.1.3 Charge Carriers in Conducting Polymers 28
2.2 Doping Characteristics ... 29
 2.2.1 Chemical Doping 29
 2.2.2 Electrochemical Doping 30
2.3 Conductivity Characteristics 30
2.4 Absorption Spectra .. 31
2.5 Solubility ... 34
 2.5.1 Effect of Substituents on Solubility
 of Conjugated Polymers 34
2.5.2 Effect of Substitution on the Conductivity of Conducting Polymers. 35

2.6 Electrochemical Properties 36
2.6.1 Electrochemical Properties of Conducting Polypyrrole 36
2.6.2 Electrochemical Properties of Conducting Polyaniline 39
2.6.3 Electrochemical Properties of Polythiophene and Other Conjugated Polymers 39
2.6.4 Electrochemical Measurement of HOMO and LUMO Energy Levels of Conjugated Polymers 41

2.7 Optoelectronic Properties of Conjugated Polymers 41

2.8 Synthesis of Conducting Polymers 42
2.8.1 Electrochemical Oxidation Polymerization of Conducting Polymers 42
2.8.2 Chemical Polymerization of Conducting Polymers 46

2.9 Summary 47

References 49

3 Organic Semiconductors for Field-Effect Transistors 51

Weifeng Zhang and Gui Yu

3.1 Introduction 52
3.1.1 Overview 52
3.1.2 History and Work Principle of OFETs 53
3.1.3 Device Configuration and Processing Technique of OFETs 57
3.1.4 Factors Influencing the Performance of OFETs 60

3.2 p-Type Semiconductors 67
3.2.1 Selected p-Type Small-Molecule Semiconductors 67
3.2.2 Selected p-Type Polymer Semiconductors 93

3.3 n-Type Semiconductors 104
3.3.1 Selected n-Type Small-Molecule Semiconductors 104
3.3.2 Selected n-Type Polymer Semiconductors 126

3.4 Ambipolar Semiconductors 130
3.4.1 Selected Ambipolar Small-Molecule Semiconductors 131
3.4.2 Selected Ambipolar Polymer Semiconductors 136

3.5 Outlook 141

References 141
4 **Organic Semiconductor Photovoltaic Materials** 165
Zhi-Guo Zhang
4.1 Introduction .. 165
4.2 Organic Solar Cells by Vacuum Deposition 166
4.3 Organic Solar Cells by Solution Processing 169
4.3.1 Dyes .. 169
4.3.2 Triphenylamine Derivatives 173
4.3.3 Oligothiophenes .. 176
4.3.4 Linear D-A Oligothiophenes 178
4.3.5 Organic Molecule Acceptors 183
4.4 Conclusion and Future Perspectives 188
References .. 188

5 **Conjugated Polymer Photovoltaic Materials** 195
Long Ye and Jianhui Hou
5.1 Introduction .. 195
5.1.1 Brief Summary of Photovoltaic Polymers 196
5.1.2 Design Considerations of Conjugated Polymer Photovoltaic Materials .. 196
5.2 Conjugated Polymer Donor Materials 200
5.2.1 Three Important Types of Homopolymer 200
5.2.2 Donor–Acceptor Copolymers 208
5.3 Conjugated Polymer Acceptor Materials 226
5.4 Summary and Outlook .. 229
References .. 229

6 **Organic Semiconductor Electroluminescent Materials** 241
Gufeng He
6.1 Introduction ... 241
6.2 Working Mechanism of OLEDs 242
6.2.1 Working Mechanism ... 242
6.2.2 Anode and Hole Injection Material 243
6.2.3 Cathode and Electron Injection Material 245
6.2.4 Hole and Electron Transport Materials 246
6.2.5 p- and n-Type Doping Materials 247
6.3 Fluorescent Electroluminescent Materials 250
6.3.1 Red Fluorescent Materials 251
6.3.2 Green Fluorescent Materials 252
6.3.3 Blue Fluorescent Materials 257
6.3.4 Advanced Delayed Fluorescent Materials 261
6.4 Phosphorescent Electroluminescent Materials 263
6.4.1 Red Phosphorescent Materials 264
6.4.2 Green Phosphorescent Materials 275
6.4.3 Blue Phosphorescent Materials 283
6.5 Summary and Outlook .. 290
References .. 291
7 Conjugated Polymer Electroluminescent Materials

Xing Guan, Shenjian Liu and Fei Huang

7.1 Introduction
7.1.1 Electroluminescence and PLEDs

7.2 Conjugated Electroluminescent Polymers
and Performance Tuning
7.2.1 Early Efforts
7.2.2 Performance Tuning

7.3 Luminescent Polymers Based on Dopant/Host System
7.3.1 Electrofluorescent Polymers
7.3.2 Electrophosphorescent Polymers
7.3.3 Single White Emitting Polymers

7.4 Hyperbranched Polymers
7.5 Supramolecular Luminescent Polymers
7.6 Conclusion

References

8 Transparent Conducting Polymers

Yijie Xia and Jianyong Ouyang

8.1 Electronic Structure and Optical Properties
of Conducting Polymers

8.2 Transparent Conducting Polymers

8.3 Preparation of PEDOTs by Electrochemical
Polymerization

8.4 Preparation of PEDOTs by Chemical Synthesis

8.5 Vapor-Phase Polymerization of EDOT

8.6 Development of Highly Conductive PEDOT:PSS
8.6.1 Structure of PEDOT:PSS
8.6.2 Conductivity Enhancement by Adding
Compounds to PEDOT:PSS Aqueous Solution
8.6.3 Conductivity Enhancement of PEDOT:PSS
Through a Post-coating Treatment
8.6.4 Mechanisms for the Conductivity Enhancements
of PEDOT:PSS

8.7 Application of PEDOT:PSS for Optoelectronic Devices
8.8 Outlook for Transparent Conducting Polymers

References
Organic Optoelectronic Materials
Li, Y. (Ed.)
2015, X, 392 p. 222 illus., 8 illus. in color., Hardcover
ISBN: 978-3-319-16861-6