Contents

1 Nonlinear Dynamical Systems and Global Linearizing Control Methods .. 1
 1.1 Introduction ... 1
 1.2 Characteristics of the Dynamics of Nonlinear Systems .. 1
 1.3 Computation of Isoclines .. 6
 1.4 Basic Features in the Study of Nonlinear Dynamics ... 8
 1.4.1 The Phase Diagram .. 8
 1.4.2 Stability Analysis of Nonlinear Systems ... 9
 1.4.3 Stability Analysis of Nonlinear Models .. 11
 1.5 Phase Diagrams and Equilibria of Nonlinear Models .. 12
 1.5.1 Phase Diagrams for Linear Dynamical Systems ... 12
 1.5.2 Multiple Equilibria for Nonlinear Dynamical Systems .. 17
 1.5.3 Limit Cycles .. 19
 1.6 Bifurcations in Nonlinear Dynamics ... 21
 1.6.1 Bifurcations of Fixed Points of Nonlinear Models .. 21
 1.6.2 Saddle-Node Bifurcations of Fixed Points in a One-Dimensional System 21
 1.6.3 Pitchfork Bifurcation of Fixed Points .. 22
 1.6.4 The Hopf Bifurcation .. 24
 1.7 Predecessors of Differential Flatness Theory ... 26
 1.7.1 The Differential Geometric Approach .. 26
 1.7.2 Elaboration on the Frobenius Theorem ... 29
 1.7.3 Input–Output Linearization ... 30
 1.7.4 Elaborating on Input–Output Linearization ... 33
 1.7.5 Input-State Linearization ... 37
 1.7.6 Stages in the Implementation of Input-State Linearization ... 43
 1.7.7 Input–Output and Input-State Linearization for MIMO Systems 44
 1.7.8 Dynamic Extension .. 45
2 Differential Flatness Theory and Flatness-Based Control 47
 2.1 Introduction ... 47
 2.2 Definition of Differentially Flat Systems 48
 2.2.1 The Background of Differential Flatness Theory 48
 2.2.2 Differential Flatness for Finite Dimensional Systems 49
 2.3 Properties of Differentially Flat Systems 57
 2.3.1 Equivalence and Differential Flatness 57
 2.3.2 Differential Flatness and Trajectory Planning 72
 2.3.3 Differential Flatness, Feedback Control and Equivalence .. 75
 2.4 Flatness-Based Control and State Feedback for Systems with Model Uncertainties 79
 2.5 Classification of Types of Differentially Flat Systems 82
 2.5.1 Criteria About the Differential Flatness of a System 82
 2.5.2 A Sufficient Condition for Showing that a System Is Not Differentially Flat 85
 2.5.3 Liouvillian and Nondifferentially Flat Systems 86
 2.6 Elaborated Criteria for Checking Differential Flatness 87
 2.6.1 Implicit Control Systems on Manifolds of Jets 87
 2.6.2 The Lie-Backlund Equivalence for Implicit Systems 89
 2.6.3 Conditions for Differential Flatness of Implicit Systems .. 90
 2.6.4 Example of Elaborated Differential Flatness Criteria to Nonlinear Systems 93
 2.7 Distributed Parameter Systems and Their Transformation into the Canonical Form 96
 2.7.1 State-Space Description of a Heat Diffusion Dynamics 96
 2.7.2 Differential Flatness of the Nonlinear Heat Diffusion PDE 99

3 Nonlinear Adaptive Control Based on Differential Flatness Theory .. 103
 3.1 Introduction .. 103
 3.2 Flatness-Based Adaptive Neuro-Fuzzy Control for SISO Systems 104
 3.2.1 Overview ... 104
 3.3 Flatness-Based Adaptive Fuzzy Control for SISO Dynamical Systems 105
 3.3.1 Transformation of SISO Nonlinear Systems into a Canonical Form 105
3.3.2 Adaptive Control Law for SISO Nonlinear Systems .. 106
3.3.3 Approximators of SISO System Unknown Dynamics ... 107
3.3.4 Lyapunov Stability Analysis for SISO Dynamical Systems 109
3.3.5 Simulation Tests .. 111
3.4 Flatness-Based Adaptive Fuzzy Control for MIMO Systems .. 116
 3.4.1 Overview ... 116
 3.4.2 Differential Flatness for MIMO Nonlinear Dynamical Systems 117
 3.4.3 Flatness-Based Adaptive Fuzzy Control for MIMO Nonlinear Systems 120
 3.4.4 Flatness-Based Control for a MIMO Robotic Manipulator 122
 3.4.5 Lyapunov Stability Analysis for MIMO Nonlinear Systems 127
 3.4.6 Simulation Tests ... 133

4 Nonlinear Kalman Filtering Based on Differential Flatness Theory 141
 4.1 Introduction .. 141
 4.2 The Derivative-Free Nonlinear Kalman Filter ... 142
 4.2.1 Overview ... 142
 4.2.2 Extended Kalman Filtering for Nonlinear Dynamical Systems 143
 4.2.3 Derivative-Free Kalman Filtering to SISO Nonlinear Systems 149
 4.2.4 Simulation Tests ... 152
 4.2.5 Derivative-Free Kalman Filtering for MIMO Nonlinear Systems 163
 4.2.6 Simulation Tests ... 166
 4.3 The Derivative-Free Distributed Nonlinear Kalman Filter 172
 4.3.1 Overview ... 172
 4.3.2 Overview of the Extended Information Filter ... 173
 4.3.3 Distributed Filtering for Sensorless Control .. 177
 4.3.4 Simulation Tests ... 179

5 Differential Flatness Theory and Industrial Robotics ... 183
 5.1 Overview .. 183
 5.2 Adaptive Fuzzy Control of Underactuated MIMO Robots .. 185
 5.2.1 Overview ... 185
5.2.2 Dynamic Model of the Closed-Chain 2-DOF Robotic System ... 186
5.2.3 Linearization of the Closed-Chain 2-DOF Robotic System Using Lie Algebra Theory 192
5.2.4 Differential Flatness of the Underactuated Manipulator .. 195
5.2.5 Flatness-Based Adaptive Fuzzy Control for the Underactuated Robot 198
5.2.6 Simulation Tests ... 198
5.3 Observer-Based Adaptive Fuzzy Control of MIMO Robots ... 199
5.3.1 Overview ... 199
5.3.2 Estimation of the Robot’s State Vector .. 201
5.3.3 Application of Flatness-Based Adaptive Fuzzy Control ... 203
5.3.4 Dynamics of the Observation Error .. 204
5.3.5 Approximation of the System’s Unknown Dynamics ... 205
5.3.6 Lyapunov Stability Analysis .. 206
5.3.7 The Role of Riccati Equation Coefficients in Observer-Based Adaptive Fuzzy Control 212
5.3.8 Simulation Tests ... 214
5.4 State Estimation-Based Control of Underactuated Robots ... 218
5.4.1 Overview ... 218
5.4.2 Derivative-Free Nonlinear Kalman Filter for the Closed-Chain 2-DOF Robotic System 219
5.4.3 Simulation Tests ... 222
5.5 Distributed Filtering Under External Disturbances ... 223
5.5.1 Overview ... 223
5.5.2 Dynamics and Control of the Robot ... 225
5.5.3 Simulation Tests ... 227
5.6 Distributed Nonlinear Filtering Under Measurement Delays ... 230
5.6.1 Networked Control Under Communication Disturbances .. 230
5.6.2 Networked Kalman Filtering for an Autonomous System .. 231
5.6.3 Smoothing Estimation in Case of Delayed Measurements .. 232
5.6.4 Distributed Filtering-Based Fusion of the Robot’s State Estimates ... 235
5.6.5 Simulation Tests ... 236
6 Differential Flatness Theory in Mobile Robotics and Autonomous Vehicles ... 239
 6.1 Outline ... 239
 6.2 State Estimation-Based Control of Autonomous Vehicles 241
 6.2.1 Localization and Autonomous Navigation of Ground Vehicles .. 241
 6.2.2 Application of Derivative-Free Kalman Filtering to MIMO UGV Models 242
 6.2.3 Controller Design for UGVs 244
 6.2.4 Derivative-Free Kalman Filtering for UGVs 247
 6.2.5 Simulation Tests ... 248
 6.2.6 Derivative-Free Kalman Filter-Based Navigation of the Autonomous Vehicle 252
 6.3 State Estimation-Based Control and Synchronization of Cooperating Vehicles 261
 6.3.1 Overview .. 261
 6.3.2 Distributed Kalman Filtering for Unmanned Ground Vehicles .. 263
 6.3.3 Simulation Tests ... 264
 6.4 Distributed Fault Diagnosis for Autonomous Vehicles 265
 6.4.1 Integrity Testing in Navigation Sensors of AGVs ... 265
 6.4.2 Sensor Fusion for AGV Navigation 267
 6.4.3 Canonical Form for the AGV Model 270
 6.4.4 Derivative-Free Extended Information Filtering for UGVs .. 270
 6.4.5 Simulation Tests ... 271
 6.5 Velocity Control of 4-Wheel Vehicles .. 273
 6.5.1 Overview .. 273
 6.5.2 Dynamic Model of the Vehicle 276
 6.5.3 Flatness-Based Controller for the 3-DOF Vehicle Model .. 280
 6.5.4 Estimation of Vehicle Disturbance Forces with Kalman Filtering 283
 6.5.5 Simulation Tests ... 286
 6.6 Active Vehicle Suspension Control 288
 6.6.1 Overview .. 288
 6.6.2 Dynamic Model of Vehicle Suspension 292
 6.6.3 Flatness-Based Control for a Suspension Model 296
 6.6.4 Compensating for Model Uncertainty with the Use of the H_{∞} Kalman Filter 297
 6.6.5 Robust State Estimation with the Use of Disturbance Observers 300
 6.6.6 Simulation Tests ... 302
6.7 State Estimation-Based Control of Quadrotors ... 304
6.7.1 Overview ... 304
6.7.2 Kinematic Model of the Quadropter .. 310
6.7.3 Euler-Lagrange Equations for the Quadropter .. 311
6.7.4 Design of Flatness-Based Controller for the Quadrotor’s Model 313
6.7.5 Estimation of the Quadrotor’s Disturbance Forces and Torques with Kalman Filtering .. 315
6.7.6 Simulation Tests ... 318

6.8 State Estimation-Based Control of the Underactuated Hovercraft 320
6.8.1 Overview ... 320
6.8.2 Lie Algebra-Based Control of the Underactuated Hovercraft 323
6.8.3 Flatness-Based Control of the Underactuated Vessel 329
6.8.4 Disturbances’ Compensation with the Use of the Derivative-Free Nonlinear Kalman Filter ... 330
6.8.5 Simulation Tests ... 332

7 Differential Flatness Theory and Electric Power Generation 337
7.1 Outline ... 337
7.2 State Estimation-Based Control of PMSGs .. 338
7.2.1 The PMSG Control Problem .. 338
7.2.2 Dynamic Model of the Permanent Magnet Synchronous Generator 340
7.2.3 Lie Algebra-Based Design of State Estimators for the PMSG 342
7.2.4 Differential Flatness of the PMSG ... 347
7.2.5 Estimation of PMSG Disturbance Input with Kalman Filtering 349
7.2.6 Simulation Experiments .. 352
7.3 State Estimation-Based Control of DFIGs .. 358
7.3.1 Overview ... 358
7.3.2 The Complete Sixth-Order Model of the Induction Generator 359
7.3.3 Input–Output Linearization of the DFIG Using Lie Algebra 363
7.3.4 Input–Output Linearization of the DFIG Using Differential Flatness Theory 367
7.3.5 Kalman Filter-Based Disturbance Observer for the DFIG Model 371
7.3.6 Simulation Tests ... 373
8.5.4 Differential Flatness of the Electrostatic Actuator .. 427
8.5.5 Adaptive Fuzzy Control of the MEMS Model
 Using Output Feedback ... 429
8.5.6 Lyapunov Stability Analysis ... 434
8.5.7 Simulation Tests ... 439

9 Differential Flatness Theory in Power Electronics .. 443
9.1 Introduction ... 443
9.2 Three-Phase Voltage Source Converters Control .. 444
 9.2.1 Overview ... 444
 9.2.2 Linearization of the Converter’s Model Using
 Lie Algebra ... 446
 9.2.3 Differential Flatness of the Voltage Source
 Converter ... 449
 9.2.4 Kalman Filter-Based Disturbance Observer
 for the VSC Model ... 453
 9.2.5 Simulation Tests ... 455
9.3 Inverters Control .. 458
 9.3.1 Overview ... 458
 9.3.2 Dynamic Model of the Inverter ... 459
 9.3.3 Lie Algebra-Based Control of the Inverter’s Model 463
 9.3.4 Differential Flatness of the Inverter’s Model .. 466
 9.3.5 Flatness-Based Control of the Inverter ... 468
 9.3.6 State and Disturbances Estimation with Nonlinear
 Kalman Filtering ... 472
 9.3.7 Simulation Tests ... 473
9.4 Distributed Inverters Synchronization .. 475
 9.4.1 Overview ... 475
 9.4.2 The Synchronization Problem for Parallel Inverters 477
9.5 State and Disturbances Estimation of Parallel Inverters
 with Nonlinear Kalman Filtering ... 482
 9.6 Simulation Tests ... 483

10 Differential Flatness Theory for Internal Combustion Engines 491
10.1 Overview .. 491
10.2 Flatness-Based Control of Valves in Marine Diesel Engines 493
 10.2.1 Overview ... 493
 10.2.2 Dynamic Model of the Valve ... 494
 10.2.3 Input–Output Linearization Using Lie Algebra .. 498
 10.2.4 Input–Output Linearization Using Differential
 Flatness Theory .. 501
 10.2.5 Disturbances Compensation with Derivative-Free
 Nonlinear Kalman Filter ... 504
 10.2.6 Simulation Tests ... 506
10.3 Flatness-Based Control of Diesel Combustion Engines

10.3.1 Overview

10.3.2 Dynamic Model of the Turbocharged Diesel Engine

10.3.3 Nonlinear Control of the Diesel Engine Using Lie Algebra

10.3.4 A Dynamic Extension-Based Feedback Control Scheme

10.3.5 Nonlinear Control of the Diesel Engine Using Differential Flatness Theory

10.3.6 Disturbances Compensation Using the Derivative-Free Nonlinear Kalman Filter

10.3.7 Simulation Tests

10.4 Adaptive Control for Diesel Combustion Engines

10.4.1 Overview

10.4.2 Observer-Based Adaptive Fuzzy Control for the Diesel Combustion Engine

10.4.3 Application of Flatness-Based Adaptive Fuzzy Control to the MIMO Diesel Engine Model

10.4.4 Lyapunov Stability Analysis

10.4.5 Simulation Tests

10.5 Flatness-Based Control and Kalman Filtering for the Spark-Ignited Engine

10.5.1 Overview

10.5.2 Dynamic Model of the SI Engine

10.5.3 Feedback Linearizing Control of the SI Engine Using Lie Algebra

10.5.4 Feedback Linearizing Control of the SI Engine Using Differential Flatness Theory

10.5.5 Compensation of Disturbances Using the Derivative-Free Nonlinear Kalman Filter

10.5.6 Simulation Tests

10.6 Flatness-Based Adaptive Fuzzy Control of the Spark-Ignited Engine

10.6.1 Overview

10.6.2 Flatness-Based Adaptive Fuzzy Control for SI Motors

10.6.3 Lyapunov Stability Analysis

10.6.4 Simulation Tests

10.7 Flatness-Based Control and Kalman Filtering of the Air–Fuel Ratio

10.7.1 Overview

10.8 Dynamic Model of the Air–Fuel Ratio System

10.8.1 The Air and Fuel Flow Models
10.8.2 Dynamics of the Air–Fuel Ratio System 569
10.8.3 Differential Flatness of the Air–Fuel Ratio System ... 570
10.8.4 Flatness-Based Control of the Air–Fuel Ratio System 572
10.8.5 Compensation of Uncertainties with the Derivative-Free Nonlinear Kalman Filter 573
10.8.6 Simulation Tests .. 577

11 Differential Flatness Theory for Chaotic Dynamical Systems 579
 11.1 Introduction ... 579
 11.2 Flatness-Based Control of Chaotic Dynamical Systems 580
 11.2.1 Overview ... 580
 11.2.2 Differential Flatness of Chaotic Dynamical Systems 581
 11.2.3 Flatness-Based Adaptive Fuzzy Control for Chaotic Systems 585
 11.2.4 Design of the Feedback Controller 585
 11.2.5 Approximators of Unknown System Dynamics 587
 11.2.6 Lyapunov Stability Analysis 588
 11.2.7 Nonlinear Feedback Control of Chaotic Systems Based on Fuzzy Local Linearization 591
 11.2.8 Simulation Tests 593
 11.3 Differential Flatness Theory for Chaos-Based Communication Systems 596
 11.3.1 Overview ... 596
 11.3.2 Structure of the Chaotic Communication System 598
 11.3.3 Differential Flatness Theory 600
 11.3.4 Estimation in Chaotic Modulators with Nonlinear Kalman Filter 601
 11.3.5 Channel Equalization and Synchronization Using Dual Kalman Filtering 602
 11.3.6 Simulation Tests 605

12 Differential Flatness Theory for Distributed Parameter Systems 613
 12.1 Introduction ... 613
 12.2 Pointwise Flatness-Based Control of Distributed Parameter Systems .. 615
 12.2.1 Overview ... 615
 12.2.2 Nonlinear 1D Wave-Type Partial Differential Equations 616
 12.2.3 Sine-Gordon Nonlinear PDE in the Model of the Josephson Junction 617
12.2.4 Current Equation in a Josephson Transmission Line. 618
12.2.5 State-Space Description of the Nonlinear Wave Dynamics 619
12.2.6 Solution of the Control and Estimation Problem for Nonlinear Wave Dynamics 622
12.2.7 Simulation Tests 625
12.3 Control of Heat Diffusion in Arc Welding Using Differential Flatness Theory and Nonlinear Kalman Filtering. 627
12.3.1 Overview 627
12.4 Dynamic Model of the Arc Welding Process 631
12.5 State-Space Description of the Nonlinear Heat Diffusion Dynamics 633
12.6 Solution of the Control and Estimation Problem for Nonlinear Heat Diffusion 635
12.6.1 Solution of the Control Problem 635
12.6.2 Solution of the Estimation Problem 637
12.7 Simulation Tests 639
12.8 Fault Detection and Isolation in Distributed Parameter Systems 640
12.8.1 Overview 640
12.8.2 Estimation of Nonlinear Wave Dynamics 643
12.8.3 Equivalence Between Kalman Filters and Regressor Models 645
12.8.4 Change Detection with the Local Statistical Approach 646
12.8.5 Simulation Tests 651
12.9 Application to Condition Monitoring of Civil and Mechanical Structures 656
12.9.1 Overview 656
12.9.2 Dynamical Model of the Building—Mechanical Structure 657
12.10 Differential Flatness of the Multi-DOF Building’s Structure 659
12.10.1 Damage Detection with the Use of Statistical Criteria 662
12.10.2 Disturbances Estimation with the Derivative-Free Nonlinear Kalman Filter 664
12.10.3 Simulation Tests 666
13 Differential Flatness Theory in the Background of Other Control Methods ... 671
 13.1 Differential Flatness Theory in the Background of Backstepping Control ... 671
 13.1.1 Overview .. 671
 13.1.2 Flatness-Based Control Through Transformation into the Canonical Form 673
 13.1.3 A New Approach to Flatness-Based Control for Nonlinear Dynamical Systems 674
 13.1.4 Closed-Loop Dynamics 677
 13.1.5 Comparison to Backstepping Control 679
 13.1.6 Simulation Tests .. 680
 13.2 Differential Flatness and Optimal Control 686
 13.3 Boundary Control of Nonlinear PDE Dynamics Using Differential Flatness Theory 687
 13.3.1 Overview .. 687
 13.3.2 Transformation of the PDE Model into a Set of Nonlinear ODEs 688
 13.3.3 Differential Flatness of the Nonlinear PDE Model 691
 13.3.4 Computation of a Boundary Conditions-Based Feedback Control Law 693
 13.3.5 Closed-Loop Dynamics 695
 13.3.6 Simulation Tests .. 697

References .. 701

Index ... 731
Nonlinear Control and Filtering Using Differential Flatness Approaches
Applications to Electromechanical Systems
Rigatos, G.
2015, XXIX, 736 p. 375 illus., 319 illus. in color., Hardcover
ISBN: 978-3-319-16419-9