Contents

1 Vectors and Tensors in a Finite-Dimensional Space 1
 1.1 Notion of the Vector Space 1
 1.2 Basis and Dimension of the Vector Space 3
 1.3 Components of a Vector, Summation Convention 5
 1.4 Scalar Product, Euclidean Space, Orthonormal Basis ... 6
 1.5 Dual Bases .. 8
 1.6 Second-Order Tensor as a Linear Mapping 13
 1.7 Tensor Product, Representation of a Tensor
 with Respect to a Basis 18
 1.8 Change of the Basis, Transformation Rules 21
 1.9 Special Operations with Second-Order Tensors 22
 1.10 Scalar Product of Second-Order Tensors 28
 1.11 Decompositions of Second-Order Tensors 30
 1.12 Tensors of Higher Orders 32

2 Vector and Tensor Analysis in Euclidean Space 37
 2.1 Vector- and Tensor-Valued Functions,
 Differential Calculus 37
 2.2 Coordinates in Euclidean Space, Tangent Vectors 39
 2.3 Coordinate Transformation, Co-, Contra-
 and Mixed Variant Components 43
 2.4 Gradient, Covariant and Contravariant Derivatives 45
 2.5 Christoffel Symbols, Representation of the Covariant
 Derivative .. 51
 2.6 Applications in Three-Dimensional Space: Divergence
 and Curl .. 54

3 Curves and Surfaces in Three-Dimensional Euclidean Space 69
 3.1 Curves in Three-Dimensional Euclidean Space 69
 3.2 Surfaces in Three-Dimensional Euclidean Space 76
 3.3 Application to Shell Theory 84
4 Eigenvalue Problem and Spectral Decomposition of Second-Order Tensors

4.1 Complexification 97
4.2 Eigenvalue Problem, Eigenvalues and Eigenvectors 99
4.3 Characteristic Polynomial 102
4.4 Spectral Decomposition and Eigenprojections 104
4.5 Spectral Decomposition of Symmetric Second-Order Tensors ... 109
4.6 Spectral Decomposition of Orthogonal and Skew-Symmetric Second-Order Tensors 112
4.7 Cayley-Hamilton Theorem ... 116

5 Fourth-Order Tensors

5.1 Fourth-Order Tensors as a Linear Mapping 121
5.2 Tensor Products, Representation of Fourth-Order Tensors with Respect to a Basis 122
5.3 Special Operations with Fourth-Order Tensors 125
5.4 Super-Symmetric Fourth-Order Tensors 128
5.5 Special Fourth-Order Tensors ... 130

6 Analysis of Tensor Functions

6.1 Scalar-Valued Isotropic Tensor Functions 135
6.2 Scalar-Valued Anisotropic Tensor Functions 139
6.3 Derivatives of Scalar-Valued Tensor Functions 142
6.4 Tensor-Valued Isotropic and Anisotropic Tensor Functions 152
6.5 Derivatives of Tensor-Valued Tensor Functions 159
6.6 Generalized Rivlin’s Identities 164

7 Analytic Tensor Functions

7.1 Introduction ... 169
7.2 Closed-Form Representation for Analytic Tensor Functions and Their Derivatives 173
7.3 Special Case: Diagonalizable Tensor Functions 176
7.4 Special Case: Three-Dimensional Space 179
7.5 Recurrent Calculation of Tensor Power Series and Their Derivatives .. 185

8 Applications to Continuum Mechanics

8.1 Deformation of a Line, Area and Volume Element 191
8.2 Polar Decomposition of the Deformation Gradient 193
8.3 Basis-Free Representations for the Stretch and Rotation Tensor .. 194
8.4 The Derivative of the Stretch and Rotation Tensor with Respect to the Deformation Gradient 197
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>Time Rate of Generalized Strains</td>
<td>201</td>
</tr>
<tr>
<td>8.6</td>
<td>Stress Conjugate to a Generalized Strain</td>
<td>204</td>
</tr>
<tr>
<td>8.7</td>
<td>Finite Plasticity Based on the Additive Decomposition of Generalized Strains</td>
<td>207</td>
</tr>
<tr>
<td>9</td>
<td>Solutions</td>
<td>213</td>
</tr>
<tr>
<td>9.1</td>
<td>Exercises of Chap. 1</td>
<td>213</td>
</tr>
<tr>
<td>9.2</td>
<td>Exercises of Chap. 2</td>
<td>226</td>
</tr>
<tr>
<td>9.3</td>
<td>Exercises of Chap. 3</td>
<td>238</td>
</tr>
<tr>
<td>9.4</td>
<td>Exercises of Chap. 4</td>
<td>246</td>
</tr>
<tr>
<td>9.5</td>
<td>Exercises of Chap. 5</td>
<td>256</td>
</tr>
<tr>
<td>9.6</td>
<td>Exercises of Chap. 6</td>
<td>262</td>
</tr>
<tr>
<td>9.7</td>
<td>Exercises of Chap. 7</td>
<td>274</td>
</tr>
<tr>
<td>9.8</td>
<td>Exercises of Chap. 8</td>
<td>279</td>
</tr>
</tbody>
</table>

References .. 281

Index ... 285
Tensor Algebra and Tensor Analysis for Engineers
With Applications to Continuum Mechanics
Itskev, M.
2015, XVII, 290 p. 20 illus., 13 illus. in color., Hardcover
ISBN: 978-3-319-16341-3