Contents

1 Introduction .. 1
 1.1 A Brief History of Quantum Mechanics 1
 1.2 Revolutionary Concepts of Quantum Mechanics ... 5
 1.3 Quantum Information 7
 1.4 Content of the Book 10
 1.5 Suggested Paths .. 13
 1.6 Conventions on Notation 14
 References .. 16

Part I Fundamentals

2 Vector and Hilbert Spaces 21
 2.1 Introduction .. 21
 2.2 Vector Spaces .. 22
 2.3 Inner-Product Vector Spaces 25
 2.4 Definition of Hilbert Space 29
 2.5 Linear Operators .. 33
 2.6 Eigenvalues and Eigenvectors 38
 2.7 Outer Product. Elementary Operators 40
 2.8 Hermitian and Unitary Operators 44
 2.9 Projectors ... 47
 2.10 Spectral Decomposition Theorem (EID) 54
 2.11 The Eigendecomposition (EID) as Diagonalization . 60
 2.12 Functional Calculus 62
 2.13 Tensor Product .. 67
 2.14 Other Fundamentals Developed Throughout the Book . 74
 References .. 75
3 Elements of Quantum Mechanics

3.1 Introduction ... 77
3.2 The Environment of Quantum Mechanics 78
3.3 On the Statistical Description of a Closed Quantum System . 81
3.4 Dynamical Evolution of a Quantum System 86
3.5 Quantum Measurements 91
3.6 Measurements with Observables 98
3.7 Generalized Quantum Measurements (POVM) 102
3.8 Summary of Quantum Measurements 105
3.9 Combined Measurements 106
3.10 Composite Quantum Systems 111
3.11 Nonunicity of the Density Operator Decomposition 117
3.12 Revisiting the Qubit and Its Description 121

References ... 129

Part II Quantum Communications

4 Introduction to Part II: Quantum Communications 133
4.1 A General Scheme of a Telecommunications System 135
4.2 Essential Performances of a Communication System 137
4.3 Classical and Quantum Communications Systems 143
4.4 Scenarios of Classical Optical Communications 146
4.5 Poisson Processes ... 155
4.6 Filtered Poisson Processes 158
4.7 Optical Detection: Semiclassical Model 165
4.8 Simplified Theory of Photon Counting and Implementation .. 175

References ... 181

5 Quantum Decision Theory: Analysis and Optimization 183
5.1 Introduction .. 183
5.2 Analysis of a Quantum Communications System 186
5.3 Analysis and Optimization of Quantum Binary Systems 192
5.4 Binary Optimization with Pure States 195
5.5 System Specification in Quantum Decision Theory 203
5.6 State and Measurement Matrices with Pure States 204
5.7 State and Measurement Matrices with Mixed States 204
5.8 Formulation of Optimal Quantum Decision 209
5.9 Holevo’s Theorem .. 211
5.10 Numerical Methods for the Search for Optimal Operators ... 213
5.11 Kennedy’s Theorem .. 216
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12</td>
<td>The Geometry of a Constellation of States</td>
<td>221</td>
</tr>
<tr>
<td>5.13</td>
<td>The Geometrically Uniform Symmetry (GUS)</td>
<td>230</td>
</tr>
<tr>
<td>5.14</td>
<td>Optimization with Geometrically Uniform Symmetry</td>
<td>235</td>
</tr>
<tr>
<td>5.15</td>
<td>State Compression in Quantum Detection</td>
<td>238</td>
</tr>
<tr>
<td>6</td>
<td>Quantum Decision Theory: Suboptimization</td>
<td>251</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>251</td>
</tr>
<tr>
<td>6.2</td>
<td>Square Root Measurements (SRM)</td>
<td>253</td>
</tr>
<tr>
<td>6.3</td>
<td>Performance Evaluation with the SRM Decision</td>
<td>257</td>
</tr>
<tr>
<td>6.4</td>
<td>SRM with Mixed States</td>
<td>262</td>
</tr>
<tr>
<td>6.5</td>
<td>SRM with Geometrically Uniform States (GUS)</td>
<td>265</td>
</tr>
<tr>
<td>6.6</td>
<td>SRM with Mixed States Having the GUS</td>
<td>272</td>
</tr>
<tr>
<td>6.7</td>
<td>Quantum Compression with SRM</td>
<td>276</td>
</tr>
<tr>
<td>6.8</td>
<td>Quantum Chernoff Bound</td>
<td>277</td>
</tr>
<tr>
<td>7</td>
<td>Quantum Communications Systems</td>
<td>281</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>281</td>
</tr>
<tr>
<td>7.2</td>
<td>Overview of Coherent States</td>
<td>282</td>
</tr>
<tr>
<td>7.3</td>
<td>Constellations of Coherent States</td>
<td>287</td>
</tr>
<tr>
<td>7.4</td>
<td>Parameters in a Constellation of Coherent States</td>
<td>292</td>
</tr>
<tr>
<td>7.5</td>
<td>Theory of Classical Optical Systems</td>
<td>296</td>
</tr>
<tr>
<td>7.6</td>
<td>Analysis of Classical Optical Binary Systems</td>
<td>304</td>
</tr>
<tr>
<td>7.7</td>
<td>Quantum Decision with Pure States</td>
<td>314</td>
</tr>
<tr>
<td>7.8</td>
<td>Quantum Binary Communications Systems</td>
<td>316</td>
</tr>
<tr>
<td>7.9</td>
<td>Quantum Systems with OOK Modulation</td>
<td>318</td>
</tr>
<tr>
<td>7.10</td>
<td>Quantum Systems with BPSK Modulation</td>
<td>320</td>
</tr>
<tr>
<td>7.11</td>
<td>Quantum Systems with QAM Modulation</td>
<td>323</td>
</tr>
<tr>
<td>7.12</td>
<td>Quantum Systems with PSK Modulation</td>
<td>331</td>
</tr>
<tr>
<td>7.13</td>
<td>Quantum Systems with PPM Modulation</td>
<td>337</td>
</tr>
<tr>
<td>7.14</td>
<td>Overview of Squeezed States</td>
<td>348</td>
</tr>
<tr>
<td>7.15</td>
<td>Quantum Communications with Squeezed States</td>
<td>354</td>
</tr>
<tr>
<td>8</td>
<td>Quantum Communications Systems with Thermal Noise</td>
<td>361</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>361</td>
</tr>
<tr>
<td>8.2</td>
<td>Representation of Thermal Noise</td>
<td>363</td>
</tr>
<tr>
<td>8.3</td>
<td>Noisy Coherent States as Gaussian States</td>
<td>367</td>
</tr>
<tr>
<td>8.4</td>
<td>Discretization of Density Operators</td>
<td>369</td>
</tr>
<tr>
<td>8.5</td>
<td>Theory of Classical Optical Systems with Thermal Noise</td>
<td>373</td>
</tr>
<tr>
<td>8.6</td>
<td>Check of Gaussianity in Classical Optical Detection</td>
<td>376</td>
</tr>
<tr>
<td>8.7</td>
<td>Quantum Communications Systems with Thermal Noise</td>
<td>381</td>
</tr>
</tbody>
</table>
9 Implementation of QTLC Systems .. 421
 9.1 Introduction .. 421
 9.2 Components for Quantum Communications Systems 423
 9.3 Classical Optical Communications Systems 431
 9.4 Binary Quantum Communications Systems 433
 9.5 Multilevel Quantum Communications Systems 443
References ... 446

Part III Quantum Information

10 Introduction to Quantum Information 451
 10.1 Introduction .. 451
 10.2 Partial Trace and Reduced Density Operators 454
 10.3 Overview of Entanglement ... 457
 10.4 Purification of Mixed States 461
References ... 462

11 Fundamentals of Continuous Variables 463
 11.1 Introduction .. 464
 11.2 From Discrete to Continuous in Quantum Mechanics 466
 11.3 The Harmonic Oscillator .. 473
 11.4 Coherent States ... 479
 11.5 Abstract Formulation of Continuous Quantum Variables 481
 11.6 Phase Space Representation: Preliminaries 484
 11.7 Phase Space Representation: Definitions for the N-Mode 491
 11.8 Phase Space Representations in the Single Mode 499
 11.9 Examples of Continuous States in the Single Mode 503
 11.10 Gaussian Transformations and Gaussian Unitaries 508
 11.11 Gaussian Transformations in the N-Mode 512
 11.12 N-Mode Gaussian States .. 519
 11.13 Normal Ordering of Gaussian Unitaries 522
 11.14 Gaussian Transformations in the Single Mode 525
 11.15 Single-Mode Gaussian States and Their Statistics 529
 11.16 More on Single-Mode Gaussian States 535
11 Gaussian States and Transformations in the Two-Mode

11.17 Gaussian States and Transformations in the Two-Mode 540
11.18 Beam Splitter .. 546
11.19 Entanglement in Two-Mode Gaussian States 549
11.20 Gaussian States and Geometrically Uniform Symmetry .. 552
References .. 571

12 Classical and Quantum Information Theory

12 Classical and Quantum Information Theory 573
12.1 Introduction .. 573
12.2 Messages of Classical Information 577
12.3 Measure of Information and Classical Entropy 580
12.4 Quantum Entropy ... 585
12.5 Classical Data Compression (Source Coding) 595
12.6 Quantum Data Compression 600
12.7 Classical Channels and Channel Encoding 605
12.8 Quantum Channels and Open Systems 614
12.9 Accessible Information and Holevo Bound 620
12.10 Transmission Through a Noisy Quantum Channel 625
References .. 636

13 Applications of Quantum Information

13 Applications of Quantum Information 639
13.1 Introduction .. 639
13.2 Quantum Random Number Generation 640
13.3 Introduction to Quantum Cryptography 645
13.4 Quantum Key Distribution (QKD) 646
13.5 Teleportation .. 659
References .. 662

Index .. 665
Quantum Communications
Cariolaro, G.
2015, XXI, 673 p. 221 illus., 65 illus. in color., Hardcover
ISBN: 978-3-319-15599-9