Contents

1 Brief History of Suspension Bridges .. 1
 1.1 First Suspension Bridges ... 1
 1.2 Collapses Due to an External Resonance 4
 1.3 Collapses Due to Unexpected Oscillations 7
 1.4 The Tacoma Narrows Bridge Collapse 12
 1.5 Some Bridges That Did Not Collapse 14
 1.6 Some Doubts and Questions .. 18
 1.7 Partial Explanations of the Tacoma Narrows Bridge Collapse... 21
 1.7.1 Structural Failure 21
 1.7.2 External Resonance 24
 1.7.3 Vortices ... 25
 1.7.4 Flutter ... 28
 1.7.5 Parametric Resonance 32
 1.7.6 Partial Conclusions: Aerodynamic Effects 34
 1.8 Nonlinear Behavior of Suspension Bridges 36
 1.9 Bibliographical Notes .. 40

2 One Dimensional Models ... 43
 2.1 From Navier to Melan ... 44
 2.2 Linear and Quasilinear Beam Equations 46
 2.3 Deflection of Cables Under Vertical Loads 49
 2.4 Suspension Bridges Modeled by Beams and Cables 51
 2.5 The Melan Equation ... 54
 2.5.1 How to Compute the Additional Tension of the Cables 54
 2.5.2 Existence and Uniqueness Results 59
 2.5.3 Numerical Implementations with a Stable Fixed Point 63
 2.5.4 Numerics with an Unstable Fixed Point
 for an Actual Bridge ... 66
2.6 Self-excited Oscillations in Semilinear Beam Equations 72
 2.6.1 A Model with Superlinear Springs 72
 2.6.2 Unbounded Beams and Self-excited Oscillations 74
 2.6.3 Hinged Beams Subject to Nonlinear Elastic Forces 78
2.7 The Birth of Aerodynamics ... 85
 2.7.1 From Melan Until the Wake of Tacoma 85
 2.7.2 More Recent Models and the Sin of Mathematics 89
2.8 McKenna and the Awakening of Nonlinearity 90
 2.8.1 Beam Suspended by Possibly Slackening Hangers 91
 2.8.2 A Cable-Beam System with Possibly Slackening Hangers ... 95
 2.8.3 Stretching Energy in a Compressed Beam 97
2.9 Bibliographical Notes .. 99

3 A Fish-Bone Beam Model ... 105
 3.1 A Beam Showing Torsional Oscillations 106
 3.2 Parametric Resonance in a Linearised Model 107
 3.3 A Nonlinear Version .. 108
 3.3.1 Well Posedness .. 108
 3.3.2 Dropping the Trigonometric Functions 110
 3.3.3 Choosing the Nonlinearity 112
 3.4 Finite Dimensional Torsional Stability 114
 3.4.1 Why Can We Neglect High Torsional Modes? 114
 3.4.2 Stability of the Low Modes 116
 3.4.3 The Approximated 1-Mode System 119
 3.4.4 The Approximated 2-Modes System 122
 3.5 The Flutter Energy .. 125
 3.6 Which Residual Mode Captures the Energy of the Dominant Mode?
 3.6.1 Stability for Low Energy 127
 3.6.2 Numerical Computation of the Flutter Energy 130
 3.6.3 More General Nonlinearities 135
 3.6.4 Mechanical Interpretation and Structural Remedies 137
 3.7 The Role of Aerodynamic Forces 139
 3.7.1 Numerical Results .. 139
 3.7.2 The Pattern Creating Oscillations in Suspension Bridges .. 143
 3.8 Brief History of the Hill and the Mathieu Equations 145
 3.9 Bibliographical Notes ... 146

4 Models with Interacting Oscillators 149
 4.1 Coupled Oscillators Modeling the Cross Section of a Bridge 149
 4.2 Energy Transfer and Poincaré Maps 153
 4.3 A Link Between the Poincaré Maps and the Hill Equations 160
 4.4 Interactions Between Multiple Cross Sections 162
 4.5 Computation of the Flutter Energy 168