3 Synchronous Parallel Discrete Event Simulation

3.1 Traditional Discrete Event Simulation

3.2 SLDL Multithreading Semantics

3.2.1 Cooperative Multithreading in SystemC

3.2.2 Pre-emptive Multithreading in SpecC

3.3 Synchronous Parallel Discrete Event Simulation

3.4 Synchronization for Multicore Parallel Simulation

3.4.1 Protecting Scheduling Resources

3.4.2 Protecting Communication

3.4.3 Channel Locking Scheme

3.4.4 Automatic Code Instrumentation for Communication Protection

3.5 Implementation Optimization for Multicore Simulation

3.6 Experiments and Results

3.6.1 Case Study on a H.264 Video Decoder

3.6.2 Case Study on a JPEG Encoder

4 Out-of-Order Parallel Discrete Event Simulation

4.1 Motivation

4.2 Out-of-Order Parallel Discrete Event Simulation

4.2.1 Notations

4.2.2 Out-of-Order PDES Scheduling Algorithm

4.3 Out-of-Order PDES Conflict Analysis

4.3.1 Thread Segments and Segment Graph

4.3.2 Static Conflict Analysis

4.3.3 Dynamic Conflict Detection

4.4 Experimental Results

4.4.1 An Abstract Model of a DVD Player

4.4.2 A JPEG Encoder Model

4.4.3 A Detailed H.264 Decoder Model

5 Optimized Out-of-Order Parallel Discrete Event Simulation

5.1 Optimized Compiler Using Instance Isolation

5.1.1 Motivation

5.1.2 Instance Isolation Without Code Duplication

5.1.3 Definitions for the Optimized Static Conflict Analysis

5.1.4 Algorithm for Static Conflict Analysis

5.1.5 Experimental Results

5.2 Optimized Scheduling Using Predictions

5.2.1 State Prediction to Avoid False Conflicts

5.2.2 Static Prediction Analysis
5.2.3 Out-of-Order PDES Scheduling with Predictions 90
5.2.4 Optimized Out-of-Order PDES Scheduling Conflict Checking with a Combined Prediction Table 91
5.2.5 Experimental Results ... 91

6 Comparison and Outlook .. 95
6.1 Experimental Setup .. 95
6.1.1 Experimental Environment Setup ... 95
6.1.2 The Parallel Benchmark Models .. 96
6.1.3 The Embedded Applications ... 98
6.2 Parallel Discrete Event Simulation Overlook 100

7 Utilizing the Parallel Simulation Infrastructure 107
7.1 Introduction ... 107
7.1.1 Creating Parallel System Models .. 108
7.1.2 Shared Variables and Race Conditions 109
7.2 Race Condition Detection for ESL Models 110
7.3 Dynamic Segment Aware Detection ... 111
7.3.1 Automatic Race Condition Diagnosis 112
7.3.2 Race Condition Elimination Infrastructure 113
7.3.3 Experiments and Results ... 116
7.3.4 Case Study: A Parallel H.264 Video Decoder 116
7.3.5 Case Study: A Parallel H.264 Video Encoder 117
7.3.6 Additional Embedded Applications ... 119
7.3.7 Conclusions for Dynamic Segment Aware Detection 120
7.4 Static Segment Aware Detection .. 120
7.4.1 Segment Graph Data Structures ... 120
7.4.2 Determining MHP Segments ... 122
7.4.3 MHP Algorithm for Race Condition Analysis 125
7.4.4 Experiments and Results ... 127
7.4.5 Conclusions for Static Segment Aware Detection 129

8 Conclusions .. 131
8.1 Contributions .. 131
8.1.1 A Model of Computation for System-Level Design 132
8.1.2 A Synchronous Parallel Discrete Event Simulator 132
8.1.3 An Advanced Parallel Discrete Event Simulation Approach 133
8.1.4 An Infrastructure for Increasing Modeling Observability 133
8.2 Future Work ... 134
 8.2.1 Model Parallelization ... 134
 8.2.2 Multithreading Library Support 134
 8.2.3 Extension to the SystemC SLDL 134
 8.2.4 Parallel Full System Validation 135
8.3 Concluding Remarks .. 135

References ... 137

Index ... 143
Out-of-order Parallel Discrete Event Simulation for Electronic System-level Design
Chen, W.
2015, XIX, 145 p. 51 illus., 41 illus. in color., Hardcover
ISBN: 978-3-319-08752-8