5 Stochastic integration and Itô’s formula
 5.1 Itô integration ... 67
 5.2 Stratonovich integration 69
 5.3 Itô’s formula and Föllmer 70
 5.4 Backward integration 75
 5.5 Exercises ... 78
 5.6 Comments ... 82

6 Doob–Meyer type decomposition for rough paths
 6.1 Motivation from stochastic analysis 83
 6.2 Uniqueness of the Gubinelli derivative and Doob–Meyer .. 85
 6.3 Brownian motion is truly rough 87
 6.4 A deterministic Norris’ lemma 88
 6.5 Brownian motion is Hölder rough 90
 6.6 Exercises ... 93
 6.7 Comments ... 93

7 Operations on controlled rough paths 95
 7.1 Relation between rough paths and controlled rough paths 95
 7.2 Lifting of regular paths. 96
 7.3 Composition with regular functions 97
 7.4 Stability II: Regular functions of controlled rough paths ... 98
 7.5 Itô’s formula revisited 100
 7.6 Controlled rough paths of low regularity 101
 7.7 Exercises ... 102

8 Solutions to rough differential equations 105
 8.1 Introduction .. 105
 8.2 Review of the Young case: a priori estimates 106
 8.3 Review of the Young case: Picard iteration 107
 8.4 Rough differential equations: a priori estimates 109
 8.5 Rough differential equations 112
 8.6 Stability III: Continuity of the Itô–Lyons map 116
 8.7 Davie’s definition and numerical schemes 117
 8.8 Lyons’ original definition 119
 8.9 Stability IV: Flows 120
 8.10 Exercises ... 121
 8.11 Comments ... 122
9 Stochastic differential equations .. 123
 9.1 Itô and Stratonovich equations 123
 9.2 The Wong–Zakai theorem ... 124
 9.3 Support theorem and large deviations 125
 9.4 Exercises .. 126
 9.5 Comments ... 127

10 Gaussian rough paths .. 129
 10.1 A simple criterion for Hölder regularity 129
 10.2 Stochastic integration and variation regularity of the covariance ... 131
 10.3 Fractional Brownian motion and beyond 139
 10.4 Exercises .. 142
 10.5 Comments ... 147

11 Cameron–Martin regularity and applications 149
 11.1 Complementary Young regularity 149
 11.2 Concentration of measure .. 154
 11.2.1 Borell’s inequality ... 154
 11.2.2 Fernique theorem for Gaussian rough paths 155
 11.2.3 Integrability of rough integrals and related topics 156
 11.3 Malliavin calculus for rough differential equations 160
 11.3.1 Bouleau–Hirsch criterion and Hörmander’s theorem 160
 11.3.2 Calculus of variations for ODEs and RDEs 161
 11.3.3 Hörmander’s theorem for Gaussian RDEs 164
 11.4 Exercises .. 166
 11.5 Comments ... 168

12 Stochastic partial differential equations 169
 12.1 Rough partial differential equations 169
 12.1.1 Linear theory: Feynman–Kac 169
 12.1.2 Nonlinear theory: flow transformation method 173
 12.1.3 Rough viscosity solutions 178
 12.2 Stochastic heat equation as a rough path 180
 12.2.1 The linear stochastic heat equation 182
 12.3 Exercises .. 186
 12.4 Comments ... 190

13 Introduction to regularity structures 191
 13.1 Introduction .. 191
 13.2 Definition of a regularity structure and first examples 192
 13.2.1 The canonical polynomial structure 194
 13.2.2 The rough path structure 195
 13.3 Definition of a model and first examples 197
 13.3.1 The canonical polynomial model 200
 13.3.2 The rough path model 202
 13.4 Wavelets and the reconstruction theorem 204
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5</td>
<td>Exercises</td>
<td>209</td>
</tr>
<tr>
<td>13.6</td>
<td>Comments</td>
<td>210</td>
</tr>
<tr>
<td>14</td>
<td>Operations on modelled distributions</td>
<td>211</td>
</tr>
<tr>
<td>14.1</td>
<td>Differentiation</td>
<td>211</td>
</tr>
<tr>
<td>14.2</td>
<td>Products and composition by regular functions</td>
<td>212</td>
</tr>
<tr>
<td>14.3</td>
<td>Schauder estimates and admissible models</td>
<td>215</td>
</tr>
<tr>
<td>14.4</td>
<td>Exercises</td>
<td>219</td>
</tr>
<tr>
<td>15</td>
<td>Application to the KPZ equation</td>
<td>221</td>
</tr>
<tr>
<td>15.1</td>
<td>Formulation of the main result</td>
<td>221</td>
</tr>
<tr>
<td>15.2</td>
<td>Construction of the associated regularity structure</td>
<td>224</td>
</tr>
<tr>
<td>15.3</td>
<td>The structure group</td>
<td>227</td>
</tr>
<tr>
<td>15.4</td>
<td>Canonical lifts of regular functions</td>
<td>229</td>
</tr>
<tr>
<td>15.5</td>
<td>Renormalisation of the KPZ equation</td>
<td>230</td>
</tr>
<tr>
<td>15.5.1</td>
<td>The renormalisation group</td>
<td>230</td>
</tr>
<tr>
<td>15.5.2</td>
<td>The renormalised equations</td>
<td>232</td>
</tr>
<tr>
<td>15.5.3</td>
<td>Convergence of the renormalised models</td>
<td>234</td>
</tr>
<tr>
<td>15.6</td>
<td>The KPZ equation and rough paths</td>
<td>238</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>241</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>249</td>
</tr>
</tbody>
</table>
A Course on Rough Paths
With an Introduction to Regularity Structures
Friz, P.K.; Hairer, M.
2014, XIV, 251 p. 2 illus., Softcover
ISBN: 978-3-319-08331-5