Contents

1 **Formal Model of 3D Protein Structures for Functional Genomics, Comparative Bioinformatics, and Molecular Modeling** ... 1
1.1 Introduction ... 1
1.2 General Definition of Protein Spatial Structure 2
1.3 A Reference to Representation Levels 4
 1.3.1 Primary Structure .. 4
 1.3.2 Secondary Structure .. 6
 1.3.3 Tertiary Structure ... 8
 1.3.4 Quaternary Structure ... 11
1.4 Relative Coordinates of Protein Structures 13
1.5 Energy Properties of Protein Structures 17
1.6 Summary ... 19
References ... 20

2 **Multithreaded PSS-SQL for Searching Databases of Secondary Structures** .. 25
2.1 Introduction ... 25
2.2 Storing and Processing Secondary Structures in a Relational Database ... 28
 2.2.1 Data Preparation and Storing 28
 2.2.2 Indexing of Secondary Structures 30
 2.2.3 Alignment Algorithm ... 30
 2.2.4 Multithreaded Implementation 33
2.3 SQL as the Interface Between User and the Database 36
 2.3.1 Pattern Representation in PSS-SQL Queries 37
 2.3.2 Sample Queries in PSS-SQL 38
2.4 Efficiency of the PSS-SQL .. 41
2.5 Discussion ... 43
2.6 Summary ... 45
References ... 45
3 Parallel CUDA-Based Protein 3D Structure Similarity Searching 49
 3.1 Introduction .. 49
 3.1.1 What Makes the Problem ... 50
 3.1.2 CUDA Architecture and Construction of GPU Devices 51
 3.1.3 CUDA-Enabled GPUs in Processing Biological Data 52
 3.2 CASSERT for Protein Structures Similarity Searching 53
 3.2.1 General Course of the Matching Method 55
 3.2.2 First Phase: Low-Resolution Alignment 56
 3.2.3 Second Phase: High-Resolution Alignment 58
 3.2.4 Third Phase: Structural Superposition and Alignment Visualization 59
 3.3 GPU-Based Implementation of the CASSERT 60
 3.3.1 Data Preparation ... 60
 3.3.2 Implementation of Two-Phase Structural Alignment in a GPU 63
 3.3.3 First Phase of Structural Alignment in the GPU 64
 3.3.4 Second Phase of Structural Alignment in the GPU 68
 3.4 GPU-CASSERT Efficiency Tests ... 70
 3.5 Discussion ... 74
 3.6 Summary ... 76
References ... 77

4 Cloud Computing for 3D Protein Structure Alignment 81
 4.1 Introduction ... 81
 4.1.1 Cloud Computing in Bioinformatics and Life Sciences 82
 4.1.2 Cloud Deployment and Service Models 83
 4.1.3 Microsoft Azure ... 84
 4.2 Cloud4Psi for 3D Protein Structure Alignment 86
 4.2.1 Use Case: Interaction with Cloud4Psi 87
 4.2.2 Architecture and Model of the Cloud4Psi 89
 4.2.3 Algorithms for Protein Structure Similarity Searching 92
 4.2.4 Implementation of Similarity Searching in Azure Cloud 92
 4.3 Efficiency of the Cloud4Psi ... 98
 4.4 Discussion ... 100
 4.5 Summary ... 100
References ... 101
5 General Discussion and Concluding Remarks

5.1 General Discussion

5.2 Concluding Remarks

References

Index
High-Performance Computational Solutions in Protein Bioinformatics
Mrozek, D.
2014, XIX, 109 p. 56 illus., 21 illus. in color., Softcover
ISBN: 978-3-319-06970-8