Contents

Part I Foundation

1 Model elliptic problems .. 3
 1.1 A brief history of the mimetic finite difference method 6
 1.2 Other compatible discretization methods 14
 1.3 Principles of mimetic discretizations 18
 1.4 Scalar elliptic problems ... 24
 1.4.1 Diffusion equation in primal form 24
 1.4.2 Diffusion equation in mixed form 25
 1.4.3 Advection-diffusion equation in mixed form 26
 1.5 Vector elliptic problems .. 27
 1.5.1 Stokes problem .. 27
 1.5.2 Linear elasticity problem 28
 1.5.3 Reissner-Mindlin plate bending problem 31
 1.5.4 Magnetostatics problem 32
 1.6 Polyhedral meshes .. 33
 1.6.1 Mesh shape regularity 34
 1.6.2 Consequences of the mesh regularity assumptions 36
 1.7 Polygonal meshes .. 39

2 Foundations of mimetic finite difference method 41
 2.1 Degrees of freedom and discrete fields 43
 2.2 Discrete spaces and projection operators 45
 2.3 Primary mimetic operators 47
 2.3.1 The discrete gradient operator \(\nabla_h : \mathcal{V}_h \to \mathcal{E}_h \) 47
 2.3.2 The discrete curl operator \(\text{curl}_h : \mathcal{E}_h \to \mathcal{F}_h \) 48
 2.3.3 The discrete divergence operator \(\text{div}_h : \mathcal{F}_h \to \mathcal{P}_h \) 48
 2.3.4 Discrete versions of the Stokes theorem 49
 2.3.5 Basic properties of the primary operators 50
 2.3.6 Matrix representation of the primary operators 52
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>Derived mimetic operators</td>
<td>53</td>
</tr>
<tr>
<td>2.5</td>
<td>Second-order discrete operators</td>
<td>55</td>
</tr>
<tr>
<td>2.6</td>
<td>Exact identities</td>
<td>57</td>
</tr>
<tr>
<td>2.6.1</td>
<td>The kernel of the primary operators</td>
<td>58</td>
</tr>
<tr>
<td>2.6.2</td>
<td>The kernel of the derived operators</td>
<td>59</td>
</tr>
<tr>
<td>2.6.3</td>
<td>The kernel of the second-order mimetic operators</td>
<td>61</td>
</tr>
<tr>
<td>2.7</td>
<td>Discrete Helmholtz decomposition theorems</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>Mimetic inner products and reconstruction operators</td>
<td>67</td>
</tr>
<tr>
<td>3.1</td>
<td>Mimetic inner product</td>
<td>67</td>
</tr>
<tr>
<td>3.2</td>
<td>Properties of the reconstruction operators</td>
<td>71</td>
</tr>
<tr>
<td>3.3</td>
<td>Minimal reconstruction operators</td>
<td>73</td>
</tr>
<tr>
<td>3.3.1</td>
<td>The reconstruction operators R_Ω^γ, R_Ω^ω, and R_Ω^ϕ</td>
<td>74</td>
</tr>
<tr>
<td>3.3.2</td>
<td>The reconstruction operators R_Ω^ω, R_Ω^ϕ, and R_Ω^ϕ</td>
<td>74</td>
</tr>
<tr>
<td>3.3.3</td>
<td>The reconstruction operators R_Ω^γ and R_Ω^ϕ</td>
<td>79</td>
</tr>
<tr>
<td>3.3.4</td>
<td>The reconstruction operator R_Ω^ϕ</td>
<td>83</td>
</tr>
<tr>
<td>3.4</td>
<td>Mimetic inner products for a single cell</td>
<td>84</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Mimetic inner product in \mathcal{V}_h, P</td>
<td>86</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Mimetic inner product in \mathcal{E}_h, P</td>
<td>86</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Mimetic inner product in \mathcal{F}_h, P</td>
<td>88</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Mimetic inner product in \mathcal{P}_h, P</td>
<td>88</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Formula for the inner product matrix</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>Mimetic discretization of bilinear forms</td>
<td>91</td>
</tr>
<tr>
<td>4.1</td>
<td>Discrete bilinear forms</td>
<td>92</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Consistency condition</td>
<td>94</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Stability condition</td>
<td>96</td>
</tr>
<tr>
<td>4.2</td>
<td>Algebraic form of the consistency condition</td>
<td>97</td>
</tr>
<tr>
<td>4.3</td>
<td>Formula for matrix M_P</td>
<td>99</td>
</tr>
<tr>
<td>4.4</td>
<td>Stability analysis</td>
<td>103</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Stability result in the natural norm</td>
<td>103</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Stability result in the mesh-dependent norm</td>
<td>108</td>
</tr>
<tr>
<td>4.5</td>
<td>Construction of stabilization matrix M_P</td>
<td>111</td>
</tr>
<tr>
<td>4.6</td>
<td>The inverse of matrix M_P</td>
<td>113</td>
</tr>
<tr>
<td>Part II</td>
<td>Mimetic Discretization of Basic PDEs</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>The diffusion problem in mixed form</td>
<td>117</td>
</tr>
<tr>
<td>5.1</td>
<td>Mimetic discretization</td>
<td>118</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Degrees of freedom and projection operators</td>
<td>118</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Strong and weak forms of the discrete equations</td>
<td>119</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Stability and consistency conditions</td>
<td>121</td>
</tr>
<tr>
<td>5.1.4</td>
<td>A family of mimetic schemes</td>
<td>123</td>
</tr>
<tr>
<td>5.2</td>
<td>Convergence analysis and error estimates</td>
<td>128</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Preliminary lemmas</td>
<td>129</td>
</tr>
</tbody>
</table>
Contents

7.2.2 Strong form of discrete equations .. 200
7.2.3 Divergence constraints and energy conservation 202
7.2.4 Stability and consistency conditions 204
7.2.5 A family of mimetic schemes .. 208

7.3 Magnetostatics equations ... 210
7.3.1 Strong and weak forms of discrete equations 211
7.3.2 Stability and consistency conditions 214
7.3.3 Convergence analysis ... 215

8 The Stokes problem ... 221
8.1 The mimetic formulation ... 222
8.1.1 Degrees of freedom and projection operators 222
8.1.2 Mimetic operators, inner products and bilinear forms 225
8.1.3 Discrete strong and weak formulations 226
8.1.4 Stability and consistency conditions 228
8.1.5 Formula for the stiffness matrix 230
8.2 Convergence analysis and error estimates 233
8.2.1 Preliminaries and technical lemmas 233
8.2.2 Stability analysis ... 234
8.2.3 Error estimates ... 241
8.3 Reduced edge bubbles formulation 247
8.3.1 The modified mimetic discretization 248
8.3.2 Stability of the modified scheme 249
8.3.3 A macroelement technique ... 250
8.3.4 Sufficient conditions for the stability 252
8.4 Existence of the reconstruction operator 256
8.4.1 Construction of the scalar reconstruction operator 256
8.4.2 Construction of the vector reconstruction operator 258

Part III Further Developments

9 Elasticity and plates ... 263
9.1 Displacement-pressure formulation of linear elasticity 263
9.2 Stress-displacement formulation of linear elasticity 265
9.2.1 Assumptions on mesh and data 266
9.2.2 Degrees of freedom and projection operators 267
9.2.3 Discrete mimetic operators ... 268
9.2.4 Weak form of discrete equations 270
9.2.5 Practical construction of the scalar product 272
9.2.6 Stability and convergence analysis 274
9.3 Reissner-Mindlin plates ... 276
9.3.1 Assumptions on mesh and data 277
9.3.2 Degrees of freedom and projection operators 277
9.3.3 Discrete operators and norms 279
9.3.4 Mimetic inner products and bilinear forms 280
9.3.5 Weak form of discrete equations 283
9.3.6 A priori error estimates 283
9.4 Implementation of the method 284
9.4.1 Stiffness matrix for the bilinear form $a_{h,p}$ 285
9.4.2 Stiffness matrix for the shear energy term 286

10 Other linear and nonlinear mimetic schemes 289
10.1 Advection-diffusion equation 289
10.1.1 Discretization of the advective term 290
10.1.2 An alternative hybrid discretization of the advection term . 295
10.1.3 Convergence analysis 296
10.1.4 Shock-capturing behavior 298
10.2 Obstacle problem .. 302
10.2.1 The problem formulation 302
10.2.2 A mimetic discretization 302
10.2.3 Convergence of the method 304
10.2.4 Numerical test .. 309

11 Analysis of parameters and maximum principles 311
11.1 Hybridization techniques 312
11.1.1 The mixed-hybrid mimetic formulation 313
11.1.2 Convergence analysis for Lagrange multipliers 314
11.2 Monotonicity conditions for the mixed-hybrid formulation 317
11.2.1 Triangular and tetrahedral cells 320
11.2.2 Parallelograms .. 320
11.2.3 Oblique parallelepipeds 324
11.2.4 AMR cells .. 328
11.3 Monotonicity conditions for the nodal formulation 331
11.3.1 Geometric notation for a quadrilateral cell 331
11.3.2 Sufficient monotonicity conditions on quadrilaterals cells . 332
11.4 Non-linear optimization 334

12 Diffusion problem on generalized polyhedral meshes 339
12.1 Diffusion problem in mixed form 340
12.2 Polyhedral meshes with curved faces 341
12.3 Mimetic discretization 346
12.3.1 Degrees of freedom and projection operators 346
12.3.2 Strong and weak forms of discrete equations 349
12.3.3 Stability and consistency conditions 350
12.3.4 Derivation of mimetic inner product 352
12.4 Convergence analysis and error estimates 358
12.4.1 Stability analysis 358
12.4.2 Convergence of the vector variable 361
12.4.3 Convergence of the scalar variable 364
12.5 Exact reconstruction operators 365
The Mimetic Finite Difference Method for Elliptic Problems
Beirao da Veiga, L.; Lipnikov, K.; Manzini, G.
2014, XVI, 394 p., Hardcover
ISBN: 978-3-319-02662-6