Contents

Part I Generator Matrix

1 Generator Matrix Approach to Linear Block Codes 3
 1.1 Additive \(n \times n \) Linear Transformation of a Binary Sequence .. 3
 1.2 Generator Matrix \(G \) of a Linear Block Code. 5
 1.3 Polynomial Description of the Generator Matrix in a Linear Block Code .. 10
 1.4 Properties of a Linear Block Code Derived from the Structural Characteristics of \(g(x) \) 15
 1.5 Systematic Encoder Circuit. .. 19
 1.6 Code Concatenation: Effects on \(G \) Matrix 21
 1.7 Code Puncturation: Effects on \(G \) Matrix. 28
 1.8 Cyclic Block Codes. .. 33
 1.9 Enumeration of all the Possible Cyclic Codes of Length \(N \) .. 37
 1.10 Shortened Cyclic (SC) Codes 44
 1.11 Lengthened Cyclic (LC) Codes 47
 1.12 Subcode of an s.s. Time-Invariant Polynomial Code 56
 1.13 Modified Lengthened Cyclic (MLC) Codes 58
 1.14 State Diagrams .. 61
 1.15 Direct Product Codes .. 68
 1.16 Generator Matrix of a Direct Product Code 73
 1.17 Direct Product Codes as MLC Codes 75
 1.18 Interpretation of Particular Direct Product Codes by Means of GPC Codes 76
 1.19 Cyclic and Pseudo-Cyclic Codes in a Non-binary Alphabet .. 79
 1.20 \(Q \)-ary State Diagrams ... 83
 1.21 Main Families of Non-binary Block Codes 85
2 Wide-Sense Time-Invariant Block Codes in Their Generator Matrix

2.1 Periodically Time-Varying Generator Matrix
2.2 Quasi-Cyclic Codes (QC) as a Widening in the Concept of Cyclic Codes
2.3 Quasi-Cyclic Codes with Distributed Control Symbols Described with Their G Matrix
2.4 Representation of Known Block Codes as QC Codes with Distributed Control Symbols
2.5 Relation Between Some Binary QC-Codes and Cyclic or Pseudo-Cyclic Codes in a Q-Ary Alphabet
2.6 Encoder Circuits Based on the G Matrix for a QC Code
2.7 Shortened Quasi-Cyclic (SQC) Codes
2.8 Lengthened Quasi-Cyclic (LQC) Codes
2.9 Subcode of a w.s. Time-Invariant Polynomial Code
2.10 Modified Lengthened Quasi-Cyclic (MLQC) Codes
2.11 Trellis for a w.s. Time-Invariant Block Code Obtained from Its Generator Matrix

3 Generator Matrix Approach to s.s. Time-Invariant Convolutional Codes

3.1 Traditional View of Non-systematic s.s. Time-Invariant Convolutional Codes
3.2 State Diagram and Minimum Distance
3.3 Systematic Convolutional Codes
3.4 Low-Rate Convolutional Codes
3.5 High-Rate Punctured Convolutional Codes
3.6 Recursive Systematic Convolutional (RSC) Codes
3.7 Equivalence Between MLC Codes and s.s. Time-Invariant Convolutional Codes
3.8 Strict-Sense Time-Invariant High-Rate Convolutional (MLC) Codes
3.9 A First Bridge Between Cyclic Block Codes and s.s. Time-Invariant Convolutional Codes
3.10 Tail-Biting s.s. Time-Invariant Convolutional Codes
3.11 Trellis of an s.s. Time-Invariant Convolutional Code Obtained from Its Generator Matrix
4 Wide-Sense Time-Invariant Convolutional Codes
in Their Generator Matrix ... 205
 4.1 Periodically Time-Varying Generator Matrix
 of a Convolutional Code ... 205
 4.2 Traditional Approach to w.s. Time-Invariant Convolutional
 Codes in Their G Matrix 206
 4.3 Existence of the Inverse Linear Transformation 215
 4.4 RSC Version of a w.s. Time-Invariant
 Convolutional Code .. 218
 4.5 Equivalence Between MLQC Codes and a Certain Class
 of w.s. Time-Invariant Convolutional Codes 222
 4.6 Practical Importance of Punctured Convolutional Codes 225
 4.7 Tail-Biting w.s. Time-Invariant Convolutional Codes 226
 4.8 Unwrapping QC Block Codes and Reordered
 Versions of Convolutional Codes 231
 4.9 A First Bridge Between Quasi-cyclic Block Codes
 and w.s. Time-Invariant Convolutional Codes 238
 4.10 Trellis of a w.s. Time-Invariant Convolutional Code Obtained
 from Its Generator Matrix 240
References .. 242

Part II Parity Check Matrix

5 Parity Check Matrix Approach to Linear Block Codes 245
 5.1 Parity Check Matrix of a Linear Block Code 245
 5.2 Parity Check Matrix and Hard-Decision Decoding 249
 5.3 Relations Between the Parity Check Matrix
 and the Generator Matrix 255
 5.4 Polynomial Description of the Parity Check Matrix
 in a Linear Block Code ... 258
 5.5 Encoder Circuit Based on the Parity Check Polynomial
 and Its State Diagram .. 260
 5.6 Code Concatenation: Effects on H Matrix 266
 5.7 Code Puncturation: Effects on H Matrix 269
 5.8 Shortening Cyclic Codes: Effects on H Matrix 272
 5.9 Lengthening Cyclic Codes: Effects on H Matrix 274
 5.10 MLC Codes (s.s. Time-Invariant Convolutional Codes in G)
 and Their H Matrix ... 276
 5.11 Some Further Considerations About H Matrix in Polynomial
 Codes .. 278
 5.12 Two Types of Rows in Polynomial Code H Matrix 284
5.13 H-Extended Cyclic (HEC) Codes .. 286
5.14 Discussion About Dual Polynomial Codes 292
5.15 Modified H-Extended Cyclic (MHEC) Codes 297
5.16 Direct Product Codes: Structure of Their H Matrix 301
5.17 Composite Codes Based on GPC Codes 304
5.18 H Matrix for Non-binary Block Codes 312
5.19 Trellis of an s.s. Time-Invariant Block Code Obtained from Its Parity Check Matrix 315
References ... 319

6 Wide-Sense Time-Invariant Block Codes in Their Parity Check Matrix ... 321
6.1 Periodically Time-Varying Parity Check Matrix 321
6.2 Parity Check Matrix of a Quasi-Cyclic Code 324
6.3 Quasi-Cyclic Codes with Distributed Control Symbols
Described with Their H Matrix .. 329
6.4 Encoder Circuit Based on the H Matrix in a QC Code 332
6.5 Shortened Quasi-Cyclic (SQC) Codes and Their H Matrix ... 335
6.6 Lengthened Quasi-Cyclic (LQC) Codes and Their H Matrix .. 338
6.7 Punctured QC Codes ... 341
6.8 H-Extended Quasi-Cyclic (HEQC) Codes 343
6.9 Modified Lengthened Quasi-Cyclic (MLQC) Codes
and Their H Matrix ... 346
6.10 Modified H-Extended Quasi-Cyclic (MHEQC) Codes
and Their H Matrix ... 347
6.11 Trellis of a w.s. Time-Invariant Block Code Obtained from Its Parity Check Matrix 352
References ... 353

7 Strict-Sense Time-Invariant Convolutional Codes
in Their Parity Check Matrix .. 355
7.1 Syndrome Former Sub-matrix .. 355
7.2 Construction of the Syndrome Former Sub-matrix
for Low-Rate Convolutional Codes 360
7.3 Extension of the Procedure for Obtaining the Syndrome
Former Sub-matrix to High-Rate Convolutional Codes 366
7.4 Different Types of Not Well Designed
Convolutional Codes ... 372
7.5 Interpretation of Direct Product Codes as Particular
Not Well Designed Convolutional Codes 381
7.6 Various Situations for Well Designed
and Not Well Designed Convolutional Codes Regarding
Their Parity Check Matrix ... 385
7.7 Systematic Encoder Circuit Based on a Unique Non-periodic Parity Check Polynomial .. 393
7.8 Another Type of Systematic Encoder Circuit for s.s. Time-Invariant Convolutional Codes in Their H Matrix 398
7.9 Tail-Biting Convolutional Codes s.s. Time-Invariant in H . . . 403
7.10 Decoding Computational Complexity in the Trellis for s.s. Time-Invariant Convolutional Codes in Their H Matrix .. 408
7.11 A Second Bridge Between Cyclic Block Codes and s.s. Time-Invariant Convolutional Codes 412
References ... 417

8 Wide-Sense Time-Invariant Convolutional Codes in Their Parity Check Matrix .. 419
8.1 Traditional Obtainment of a Symbolic Parity Check Matrix in a w.s. Time-Invariant Convolutional Code 419
8.2 Null ex-OR Sum of Clusters of Syndromes for Obtaining G and Column Construction of H 427
8.3 Encoder Circuits Based on Different Parity Check Polynomials ... 430
8.4 Punctured Convolutional Codes and Their H Matrix 432
8.5 Tail-Biting w.s. Time-Invariant Convolutional Codes and Their H Matrix .. 434
8.6 Unwrapping QC Codes Described by Their H Matrix 436
8.7 Reordered Versions of a w.s. Time-Invariant Convolutional Code ... 438
8.8 Introductory Treatment of Array Codes ... 443
8.9 Generator Matrix of Improper Array Codes 448
8.10 A Second Bridge Between Quasi-Cyclic Codes and w.s. Time-Invariant Convolutional Codes 454
8.11 Unwrapping the Tail-Biting Convolutional Form of Improper Array Codes ... 462
8.12 Further Considerations on Direct Product Codes Related to QC Array Codes .. 465
References ... 468

Part III Modern Coding

9 Turbo Codes ... 473
9.1 The Basic Idea of Turbo Codes .. 473
9.2 Some Particular Aspects of RSC Codes 479
9.3 Statistical Prediction of Turbo Code Performance 482
9.4 G Matrix of a Turbo Code and Correct Frame Termination 483
9.5 Outline of the Decoding Algorithm ... 488
9.6 Turbo Codes in Serial Concatenation .. 491
9.7 Turbo-Product Codes .. 493
9.8 Parity Check Matrix of Turbo Codes ... 498
References ... 501

10 Low Density Parity Check Codes ... 503
10.1 Tanner Graph and Message Passing Decoding Algorithms Constructed on It ... 503
10.2 Short Cycles and the Row-Column Constraint 506
10.3 Main Families of LDPC Codes .. 512
10.4 Masking and Row or Column Splitting ... 517
10.5 LDPC Codes Obtained from Superimposition 521
10.6 Procedures for Obtaining LDPC Codes from Known Non-LDPC Codes .. 523
10.7 Computer Based Design of Irregular LDPC Codes 528
10.8 Outline of the Sum-Product Algorithm, Its Computational Complexity and Points of Weakness 530
10.9 Statistical Analysis of the Asymptotic Behaviour of Regular and Irregular LDPC Codes .. 533
10.10 A First Approach to LDPC Convolutional Codes 536
References ... 541

11 Binomial Product Generator LDPC Block Codes 545
11.1 Cyclic Version of a Composite Code Based on GPC Codes 545
11.2 Generator Polynomial for a Parallelepiped Concatenation of GPC Codes .. 549
11.3 Evaluation of the Minimum Distance in BPG Block Codes 553
11.4 Effects of Combined Equalities and of Independent Equalities 558
11.5 Main Results on DC-GPC Codes and Direct Products of DC-GPC Codes .. 562
11.6 Improper Array LDPC Codes .. 567
11.7 Generalized Array LDPC Codes .. 569
11.8 Some Variants of Improper Array Codes .. 572
11.9 Single-Layer Parity Check Matrix QC Codes 576
References ... 580
Polynomial Theory of Error Correcting Codes
Cancellieri, G.
2015, XVIII, 732 p. 320 illus., Hardcover
ISBN: 978-3-319-01726-6