Chapter 2

Activation of the TCR Complex by Peptide-MHC and Superantigens

Christine Louis-Dit-Sully, Britta Blumenthal, Marlena Duchniewicz, Katharina Beck-Garcia, Gina J. Fiala, Esmeralda Beck-García, Markus Mukenhirn, Susana Minguet, and Wolfgang W. A. Schamel

Abstract Drug hypersensitivity reactions are immune mediated, with T lymphocytes being stimulated by the drugs via their T-cell antigen receptor (TCR). In the nonpathogenic state, the TCR is activated by foreign peptides presented by major histocompatibility complex molecules (pMHC). Foreign pMHC binds with sufficient affinity to TCRαβ and thereby elicits phosphorylation of the cytoplasmic tails of the TCRαβ-associated CD3 subunits. The process is called TCR triggering. In this review, we discuss the current models of TCR triggering and which drug properties are crucial for TCR stimulation. The underlying molecular mechanisms mostly include pMHC-induced exposure of the CD3 cytoplasmic tails or alterations of the kinase-phosphatase equilibrium in the vicinity of CD3. In this review, we also discuss triggering of the TCR by small chemical compounds in context of these general mechanisms.
2.1 Introduction

Drug hypersensitivity reactions are a health problem worldwide, but they are difficult to predict and to cure. These reactions are immune mediated, i.e., the drug stimulates the immune system in an undesired way. The major responsive cells are T lymphocytes, being either directly or indirectly stimulated by the drug via their T-cell antigen receptor (TCR).

The TCR is a multiprotein transmembrane complex comprising the TCR$\alpha\beta$ (or TCR$\gamma\delta$), CD3$\varepsilon\gamma$, CD3$\varepsilon\delta$, and CD3$\varepsilon\zeta$ dimers (Alarcon et al. 2003; Kuhns and Davis 2012) (Fig. 2.1a) and facultatively the TRIMγ dimer (Swamy et al. 2010). TCR$\alpha\beta$ possesses variable immunoglobulin domains that bind the ligand, an antigenic peptide bound to major histocompatibility complex (pMHC) molecules. TCR$\alpha\beta$ forms contacts to the peptide as well as to the MHC (Garboczi et al. 1996; Garcia et al. 1996) (Fig. 2.1b). The CD3 chains contain tyrosine residues in their cytoplasmic tails, that are phosphorylated upon successful ligand binding to TCR$\alpha\beta$ and that transmit the signal inside the cell. These tyrosines are part of the immunoreceptor tyrosine-based activation motif (ITAM) (Reth 1989) and are phosphorylated by the kinase Lck belonging to the Src-family (Iwashima et al. 1994). Phosphorylation is the critical event in initiating downstream signaling cascades, since phosphotyrosines serve as binding sites for proteins with src homology 2 (SH2) domains. Consequently, these proteins (e.g., the kinase ZAP-70) are recruited to the receptor and activate signaling pathways, such as activation of phospholipase Cγ (PLCγ, Fig. 2.1b) and consequent calcium influx into the cytosol, resulting in the activation of the T cell. In addition, the CD3ε chain has a proline-rich sequence in its cytoplasmic tail that can bind to the signaling molecule Nck (Gil et al. 2002). For the TCR (as well as for most receptors), it is still not well understood which biochemical changes are induced by ligand binding to the receptor, that are transmitted via the transmembrane regions to the cytoplasmic tails, thereby leading to the phosphorylation of the tails. However, a number of ideas and reasonable models have been put forward for the TCR, which we will discuss here.

For each model we discuss which properties a drug needs to possess, in order to stimulate the TCR. An overview on how drugs modify pMHC, in order to activate the TCR, is found in our second review entitled “Activation of the TCR complex by small chemical compounds.”

2.2 Selection of the TCR Specificity in the Thymus

During the development of T cells in the thymus, the genes encoding for the TCRβ and TCRα chains are randomly rearranged (mutated), so that TCRs with any random specificity are generated. This includes TCRs that strongly bind to MHC loaded with self-peptides derived from endogenous proteins. Thus, T cells
expressing these TCRs are stimulated in the thymus by self-pMHC, resulting in their death. This process is called negative selection. In sharp contrast, T cells possessing TCRs that weakly bind to self-pMHC survive this process and are positively selected (Starr et al. 2003). Further maturation and subsequent tissue allocation leads to the directed distribution of matured T cells in the body. This process ensures that TCRs do not bind strongly to any self-peptides loaded onto MHC molecules in the periphery, preventing autoimmune reactions (Fig. 2.1c). If a TCR binds strongly to pMHC in the periphery, it most likely is a foreign peptide, such as derived from viruses or bacteria, being loaded onto MHC (Fig. 2.1b). Hence, a T cell whose TCR is strongly triggered in the periphery will become activated and will initiate an immune response.

Thus, drugs that alter self-pMHC, so that a potent ligand for the TCR is generated, will stimulate T cells, and this leads to the hypersensitivity reactions observed for a number of different drugs or metal ions.
2.3 TCR Triggering Models

The TCR can be activated (i.e., the tyrosine residues of the CD3 chains can be phosphorylated) using a number of different ligands, such as membrane-bound pMHC, soluble pMHC multimers, anti-TCRαβ antibodies, and bacterial superantigens (Fig. 2.1d) (all binding to TCRαβ) or anti-CD3 antibodies. Consequently, a number of mechanistic models have been put forward to explain how the TCR is triggered, i.e., how ligand binding at TCRαβ causes CD3 phosphorylation.

2.3.1 The Homoclustering Model of TCR Triggering

Early experiments showed that bivalent anti-TCRαβ or anti-CD3 antibodies can activate T cells, whereas monovalent Fab fragments of these antibodies fail to do so (Chang et al. 1981; Kaye and Janeway 1984). Likewise, the TCR is only activated by bi- or multivalent soluble, recombinant pMHC (Boniface et al. 1998; Cochran et al. 2000). These experiments indicated that the soluble ligands for the TCR have to be multivalent, in order to be functional. This implies that two or more TCRs have to bind simultaneously to one ligand molecule in order to be activated. In conjunction with the hypothesis that individual receptor molecules are distributed equally on the cell surface, these findings led to the cross-linking (homoclustering) model of TCR activation (Ashwell and Klausner 1990) (Fig. 2.2a). However, it was shown that the TCR can be pre-clustered in the resting, non-ligand-bound state (Alarcon et al. 2006; Lillemeier et al. 2010; Molnar et al. 2010, 2012; Schamel et al. 2005), which is standing in contrast to this model. Nevertheless, these TCR nanoclusters can be co-expressed with TCR monomers (Fig. 2.2b).

According to the homoclustering model, small chemical compounds would need to bind to two adjacent self-peptide-MHC molecules, in order to allow both of them to simultaneously bind to two TCRs.

2.3.2 Conformational Change Models of TCR Triggering

How can the requirement for a multivalent ligand and the presence of preformed oligomeric receptors be integrated into a unique model? One intriguing possibility is that binding of bivalent (or multivalent) ligands leads to a reorientation of one TCR in respect to the second TCR. The consequent alteration of the quaternary structure of the receptors might lead to conformational changes within the cytoplasmic tails of CD3, therefore exposing the tyrosines to allow phosphorylation (Minguet and Schamel 2008; Minguet et al. 2007). Otherwise, the CD3 cytoplasmic tails are in a closed conformation and not accessible to kinases. This model is called the permissive geometry model (Minguet and Schamel 2008) (Fig. 2.3). According
to this model, monovalent ligands are not capable of reorienting one TCR in respect to another one and are thus inactive. The main inspiration for the conformational change model was the seminal finding that a proline-rich sequence in the cytoplasmic tail of CD3ε becomes exposed upon multivalent TCR stimulation (Gil et al. 2002). The permissive geometry model is supported by the finding that an artificially selected pMHC, binding in a different geometry to TCRαβ, cannot trigger the TCR (Adams et al. 2011).

A “lipid-based model” proposes that the tyrosines of the cytoplasmic tails of CD3ε and ζ are embedded in the inner leaflet of the plasma membrane and are thus not accessible for phosphorylation. Indeed, peptides corresponding to these tails bind to and partially integrate into artificial membranes (Aivazian and Stern 2000; DeFord-Watts et al. 2011; Xu et al. 2008). pMHC binding to the TCR would modulate the lipid environment of the TCR, so that the tyrosines become exposed and available for phosphorylation (Shi et al. 2013).

If drugs and other small compounds activate TCRs according to the permissive geometry model, they would have to approximate two pMHC molecules to two TCRs, in a way that structural changes in the TCR/CD3s are induced. Considering the “lipid-based model,” the small chemical compounds have to mimic or modify pMHC in a way that binding to the TCR frees the cytoplasmic tails from being shielded by the membrane.
2.3.3 The Pseudo-dimer Model of TCR Triggering

In addition to a possible foreign peptide-MHC, an antigen-presenting cell (APC) and other cells can also present self-peptide-MHC. In contrast to foreign pMHC, the affinity of a self-pMHC-TCR interaction is too low to stimulate a TCR. Mostly, foreign peptides are presented next to self-peptides, although there is a possibility for enriching foreign peptides in certain membrane areas (Lu et al. 2012). Importantly, self-peptides aid in the recognition of foreign peptides by the T cell (Irvine et al. 2002; Stefanova et al. 2002; Wülfing et al. 2002). Indeed, it was shown that soluble pMHC dimers with one agonistic (foreign, high affinity) and one self-peptide (low affinity) could stimulate TCRs (Krogsgaard et al. 2005). This underlying model is called pseudodimer model (Fig. 2.4a) (Irvine et al. 2002) and is a variant of the homoclustering model. Furthermore, the permissive geometry model could also allow simultaneous binding of one foreign and one self-peptide loaded onto MHC, in order to induce the structural changes at CD3 (Minguet and Schamel 2008).
According to this model, it would be sufficient that small chemical compounds only bind to one pMHC of a preformed pMHC cluster, thus inducing high affinity binding of this pMHC with one TCR. The other TCR would be bound by a self-pMHC.

2.3.4 The Heteroclustering Model of TCR Triggering

As well as binding to the TCR, pMHC also binds with its constant regions to the CD8 and CD4 co-receptors. The simultaneous binding of pMHC to the TCR and CD8/CD4 could lead to a heteroclustering of the TCR with CD8/CD4. The CD8 and CD4 cytoplasmic tails interact constitutively with Lck (Kim et al. 2003) that, when recruited to the TCR, could phosphorylate CD3 (heteroclustering model, Fig. 2.4b). The findings that monomeric pMHC does not activate TCRs (Boniface et al. 1998; Cochran et al. 2000) and that anti-TCRαβ or anti-CD3 antibodies stimulate TCRs clearly argue against the heteroclustering model.

In contrast to mature T cells, all Lck is CD4- or CD8-bound in thymocytes (Van Laethem et al. 2007). Thus, in thymocytes the co-receptors have to be recruited, in
order to bring Lck in the vicinity of the TCR. Most likely, this occurs simultane-ously to another triggering event, such as exposure of the CD3 tyrosines.

If one aims to explain the activity of small chemical compounds using the heteroclustering model, then the compound would need to induce high affinity binding of one self-pMHC to one TCR and at the same time allow binding of the pMHC to either CD8 or CD4.

2.3.5 The Kinetic Segregation Model of TCR Triggering

The physiological ligand for the TCR is a membrane-bound pMHC molecule. However, due to technical reasons, most experiments to elucidate the mechanism of TCR triggering are done with soluble pMHC (see above). We think that the obtained results still hold true for membrane-bound pMHC, since key findings also hold true for stimulations with membrane-bound pMHC. For example, stimulation of T cells by APCs led to the exposure of the proline-rich sequence in CD3ε (Risueno et al. 2005), thus inducing a similar conformational change to stimulation with soluble pMHC multimers (Gil et al. 2002); and MHC class I and class II molecules form clusters on the surface of the APCs (Krishna et al. 1992; Schafer et al. 1995); therefore, the requirement for multivalent pMHC binding to TCRs seems to hold true. Anyhow, considering membrane-bound pMHC allows formu-lating additional models of TCR triggering (Choudhuri and van der Merwe 2007).

CD3 phosphorylation by kinases is counteracted by phosphatases (Mustelin et al. 2004). The main phosphatase in the plasma membrane of lymphocytes is CD45 (Trowbridge and Thomas 1994). Therefore, antigen binding could result in removal of the phosphatase from the vicinity of the TCR (Davis and van der Merwe 2006), thus initiating signal transduction. The TCR and pMHC are small molecules (Garboczi et al. 1996; Garcia et al. 1996), whereas CD45 has a bulky ectodomain (Davis and van der Merwe 2006). If the TCR and pMHC interact, then CD45 has to be “squeezed out” from these so-called close-contact zones (Davis and van der Merwe 2006) or microclusters (Yokosuka et al. 2005) (Fig. 2.5a). Indeed, confocal microscopy has shown that CD45 is excluded from TCR microclusters, where signaling is initiated at the immune synapse (Varma et al. 2006) (please note that formation of the synapse is a consequence of TCR triggering and not the cause). This model is called the kinetic segregation model since TCRs and kinases are temporally segregated from phosphatases, allowing CD3 phosphorylation. The model is supported by the finding that elongation of MHCp or shortening of CD45 results in inhibition of TCR triggering (Choudhuri et al. 2005; James and Vale 2012).

According to the kinetic segregation model, small chemical compounds presented by APCs need to be small enough so that the T cell and APC membranes come into close contact where the large phosphatases are excluded.
2.3.6 Mechanical Models of TCR Triggering

Another model includes mechanical forces that are generated when pMHC binds to the TCR (Kim et al. 2009; Ma and Finkel 2010; Wang and Reinherz 2012). These forces distort the TCR, inducing conformational changes that are transmitted to the cytoplasmic domains (Fig. 2.5a). The forces are generated by a movement of either the TCR, e.g., mediated by the actin cytoskeleton, or the pMHC, e.g., by movements of the APC.

In contrast to the permissive geometry and other models, these membrane-bound pMHC-based models would be in line with monomeric pMHC stimulating the TCR. However, they fail to explain T-cell activation via soluble anti-TCRαβ or anti-CD3 antibodies (Chang et al. 1981; Kaye and Janeway 1984) or soluble bi- or...

Fig. 2.5 The kinetic segregation and mechanic models. (a) TCRs, kinases, and transmembrane phosphatases intermingle on the membrane, resulting in constitutive phosphorylation and dephosphorylation of CD3. When the TCR interacts with membrane-bound pMHC, the two opposing membranes come into close contact. The small intermembrane distance at the TCR does not provide enough space for the large phosphatases. Therefore, phosphatases are segregated from the TCRs, resulting in accumulation of phosphorylated CD3. TCRs that do not bind to pMHC rapidly move out of these close-contact zones. In contrast, pMHC-bound TCRs stay for a sufficient amount of time inside the phosphatase-free areas. (b) Mechanical forces are applied to the TCR that change its structure allowing kinases to phosphorylate CD3. In the different mechanic models, it is either the APC that moves away from the T cell or it is the TCR being laterally moved by the actin cytoskeleton.

2.3.6 Mechanical Models of TCR Triggering
multivalent pMHC (Boniface et al. 1998; Cochran et al. 2000; Krogsgaard et al. 2005; Minguet et al. 2007).

According to the mechanical models, it would be sufficient if drugs modify self-pMHC in a manner that they would bind to TCRs with high affinity, without any further constraints.

2.3.7 TCR Triggering by Superantigens

Superantigens, also called enterotoxins, are secreted by *Staphylococcus aureus* and *Streptococcus pyrogenes* and can trigger a massive immune response that can lead to lethal toxic shock. This is caused by a peptide-independent activation of the TCR (Fraser and Proft 2008; Petersson et al. 2004). Enterotoxins bind both to the MHC class II and the outer face of TCR Vβ domains, triggering the TCR (Fig. 2.1d). The activated T cells divide and produce cytokines. As superantigens activate all T cells expressing certain Vβ domains (up to 40% of all T cells), they can cause the toxic shock. Since superantigens bridge the TCR and MHC, all of the abovementioned models potentially hold true. However, superantigens approximate the TCR and MHC in a different geometry compared to the TCR-peptide-MHC interaction (Saline et al. 2010; Wang et al. 2007) and simultaneously to the TCR and MHC also bind to the co-receptor CD28 (Arad et al. 2011).

These differences might contribute to the fact that superantigens partially stimulate different signaling pathways than pMHC. Superantigens induce the canonical “pMHC-TCR” signaling pathways, which includes phosphorylation of CD3 by Lck, recruitment of ZAP70, and activation of PLCγ (Fig. 2.1b). In addition, a second Lck-independent pathway is triggered, in which the small heterotrimeric G protein Gaα11 is activated, leading to the stimulation of PLCβ (Bueno et al. 2007, 2006) (Fig. 2.1d). Both, PLCγ and PLCβ, cleave inositol lipids resulting in the increase in cytoplasmic calcium concentrations—one of the important second messengers in T-cell activation.

Considering superantigen-mediated TCR triggering, small chemical compounds could induce self-pMHC binding to TCRαβ in any orientation and may be even independent on any peptide bound to the MHC molecule.

2.4 TCRαβ Binds to pMHC in a Conserved Orientation

pMHC always binds in a diagonal orientation to TCRαβ, with variations in the binding angle of only 35° (Rudolph et al. 2006). The N-terminus of the peptide binds to TCRα and the C-terminus to TCRβ. Whether this orientation is germ line-encoded and dictated by semi-conserved TCRαβ-MHC interactions (Garcia 2012; Scott-Browne et al. 2009) or whether this orientation is necessary to activate the TCR (Minguet and Schamel 2008) is unknown.
Our data suggested that the diagonal orientation with which TCRαβ binds to pMHC is crucial for the structural change and the activation of the TCR (permissive geometry model) (Minguet et al. 2007). Since superantigens lead to an approximation of MHC with the TCR in different orientations, they might partially activate the TCR in a different manner. If true, then drug-induced TCR activation might be accomplished by pMHC binding to TCRαβ in different geometries.

2.5 The Kinetics of the pMHC-TCRαβ Interactions Determine the Stimulation Outcome

A high affinity pMHC-TCRαβ interaction leads to T-cell activation, as observed with foreign, agonistic pMHC. In contrast, a low affinity pMHC-TCRαβ interaction does not induce T-cell activation, as seen with self-peptide-MHC molecules, preventing autoimmune reactions (see above). How can the TCR interpret different affinities? One solution is the kinetic proofreading scheme (Dushek et al. 2011; McKeithan 1995). High affinity pMHC would be bound for sufficient time to a TCR, to allow forming an activatory signalosome at the TCR. Low affinity pMHC would only bind for short time, so that the signalosome cannot form and an activatory signal is not generated. Thus, the half-life of the pMHC-TCRαβ interaction is crucial in discriminating between high and low affinity ligands.

Recently, it has been argued that also the on-rate of the pMHC-TCRαβ interaction might play a role (Aleksic et al. 2010). Thus, small chemical compounds might need to alter self-pMHC, so that the modified pMHC binds for sufficient amount of time to the TCR. This would then translate into a high affinity interaction. Likewise, a fast on-rate might be beneficial.

2.6 TCR Triggering by Non-MHC Molecules

In mature T cells, a lot of the kinase Lck molecules are not bound to CD4 or CD8 and thus are free to interact and phosphorylate the TCR. In contrast, all Lck molecules are bound to CD4 and CD8 in developing T cells, called thymocytes (Van Laethem et al. 2007). Thus, stimulation of the TCR for positive selection in thymocytes requires the co-engagement of pMHC with the TCR and CD8/CD4, in order to allow Lck to approximate the TCR. Still, the TCR triggering models discussed above could hold true, such as that the cytoplasmic tyrosines of CD3 have to be exposed (Aivazian and Stern 2000; Minguet and Schamel 2008). In a recent experiment, MHC as well as CD4 and CD8 were deleted in the mouse, so that free Lck molecules are present in the thymocytes (Tikhonova et al. 2012). This then allowed T cells to develop that do not recognize pMHC, but for instance
CD155. This experiment clearly shows that TCRs can be triggered by other molecules than MHC.

Stimulation of TCRs by non-MHC molecules is also in line with the activating capacity of anti-TCRαβ and anti-CD3 antibodies (Chang et al. 1981; Kaye and Janeway 1984) or activation of a chimeric TCR by artificial ligands (Minguet et al. 2007).

These findings open the interesting possibility that drugs could also alter other proteins than pMHC in order to generate high affinity ligands for TCRαβ or even for CD3.

2.7 Conclusion

Although triggering of the TCR is one of the most important events in adaptive immunity, there is still no consensus on the underlying molecular mechanism. This is not due to lack of interest, but due to the fact that the TCR is one of the most complicated transmembrane receptors known to date. In fact, a large number of models have been put forward that mostly are not mutually exclusive. Thus, a combination of the proposed mechanisms might be close to what happens in reality.

Acknowledgments This work was funded by the EU through grant FP7/2007–2013 (SYBILLA) and the Deutsche-Forschungsgemeinschaft (DFG) by the Excellence Initiative of the German Research Foundation (EXC294, the Center for Biological Signalling Studies, BIOSS, and GSC-4, Spemann Graduate School), SFB620 B6 and SCH 976/2-1.

References

Kuhns MS, Davis MM (2012) TCR signaling emerges from the sum of many parts. Front Immunol 3:159

T Lymphocytes as Tools in Diagnostics and Immunotoxicology
Martin, S.F. (Ed.)
2014, VI, 184 p. 27 illus., 21 illus. in color., Hardcover
ISBN: 978-3-0348-0725-8