Contents

Introduction xi

Chapter I. Pseudo-Riemannian Manifolds 1
1. Connections 1
2. First results on pseudo-Riemannian manifolds 5
 2.1. Associate connection 5
 2.2. Curvature 6
 2.3. Covariant differentiation and divergence 9
 2.4. Divergence of the Ricci tensor 9
 2.5. Lie derivative and infinitesimal isometries 11
3. Laplacians 12
4. Sobolev spaces of tensors on Riemannian manifolds 14
5. Lorentzian manifolds 16
 5.1. Definitions 16
 5.2. Specific notation for Lorentzian manifolds 17

Chapter II. Introduction to Relativity 19
1. Classical fluid mechanics 19
 1.1. A lemma on derivation of integrals 19
 1.2. Mass of a fluid. Continuity equation 20
 1.3. Total force 21
 1.4. Cauchy principle 22
 1.5. Differential expression of the motion equations 22
2. Kinematics of special relativity 23
 2.1. Inertial systems 23
 2.2. Postulates of special relativity 24
 2.3. Lorentz transformations 25
 2.4. Inertial systems and the Minkowski space 29
 2.5. Contraction of lengths 30
 2.6. Proper time of a particle 31
 2.7. Time dilation 33
Chapter VI. General Results on Stability by Linearization when the Submanifold M of V is Compact 129
1. Adjoint of $D_{(g,k)} \Phi$ 129
2. Results by A. Fischer and J. E. Marsden 133
3. A result by V. Moncrief 135
4. Appendix: General results on elliptic operators in compact manifolds 143

Chapter VII. Stability by Linearization of Einstein’s Equation at Minkowski’s Initial Metric 149
1. A further expression of $D_{(g,k)} \Phi$ 150
2. The relation between Euclidean Laplacian and stability by linearization at the initial Minkowski metric 152
3. Some proofs on topological isomorphisms in \mathbb{R}^n 153
4. Stability of the Minkowski metric: Y. Choquet-Bruhat and S. Deser’s result 162
5. The Euclidean asymptotic case 164
 5.1. $W^{p,q}_s(\mathbb{R}^n)$ Sobolev spaces and their duals 167
 5.2. Some results on elliptic and Fredholm operators in \mathbb{R}^n 169
 5.3. Proof of Theorems VII.10 and VII.11 172

Chapter VIII. Stability by Linearization of Einstein’s Equation in Robertson-Walker Cosmological Models 177
1. Euclidean model 179
2. Hyperbolic model 180
3. Sobolev spaces and hyperbolic Laplacian 181
 3.1. Δ gives an isomorphism between $F^s(\mathbb{H}^3)$ and $F^{s-2}(\mathbb{H}^3)$ 182
 3.2. A draft of the proof of Theorem VIII.3 187
4. Spherical model 190
 4.1. First and second derivatives of Φ 190
 4.2. Adjoint map of $D\Phi$ 192
 4.3. Proof of instability 193
5. Universes that are not simply connected 198

References 201
Index 205
Stability by Linearization of Einstein's Field Equation
Bruna, L.; Girbau, J.
2010, XV, 208 p., Hardcover
ISBN: 978-3-0346-0303-4
A product of Birkhäuser Basel