Image Mosaicing and Super-resolution

Abstract

This book investigates the problem of how information contained in multiple, overlapping images of the same scene may be combined to produce images of superior quality. This area, generically titled frame fusion, offers the possibility of reducing noise, extending the field of view, removal of moving objects, removing blur, increasing spatial resolution and improving dynamic range. As such, this research has many applications in fields as diverse as forensic image restoration, computer generated special effects, video image compression, and digital video editing.

An essential enabling step prior to performing frame fusion is image registration, by which an accurate estimate of the point-to-point mapping between views is computed. A robust and efficient algorithm is described to automatically register multiple images using only information contained within the images themselves. The accuracy of this method, and the statistical assumptions upon which it relies, are investigated empirically.

Two forms of frame-fusion are investigated. The first is image mosaicing, which is the alignment of multiple images into a single composition representing part of a 3D scene. Various methods of presenting the composite image are demonstrated, and in particular, a novel algorithm is developed for automatically choosing an optimal viewing transformation for certain cases. In addition, a new and efficient method is demonstrated for the matching of point features across multiple views.

The second frame-fusion method is super-resolution, which aims to restore poor-quality video sequences by removing the degradations inherent in the imaging process. The framework presented here uses a generative model of the imaging process, which is discussed in detail and an efficient implementation presented. An algorithm is developed which seeks a maximum likelihood estimate under this model, and the factors affecting its performance are investigated analytically and empirically.

The use of “generic” prior image models in a Bayesian framework is described and shown to produce dramatically improved super-resolution results. Finally, super-resolution algorithms are developed which make use of image models which are tuned to specific classes of image. These algorithms are shown to produce results of comparable or better quality than those using generic priors, while having a lower computational complexity. The technique is applied to images of text and faces.

Throughout this work, the performance of the algorithms is evaluated using real image sequences. The applications demonstrated include the separation of latent marks from cluttered, non-periodic backgrounds in forensic images; the automatic creation of full 360° panoramic mosaics; and the super-resolution restoration of various scenes, including text and faces in low-quality video.
Contents

1 Introduction 1
 1.1 Background 1
 1.2 Modelling assumptions 4
 1.3 Applications 5
 1.4 Principal contributions 5

2 Literature Survey 7
 2.1 Image registration 7
 2.1.1 Registration by a geometric transformation 7
 2.1.2 Ensuring global consistency 9
 2.1.3 Other parametric surfaces 10
 2.2 Image mosaicing 10
 2.3 Super-resolution 12
 2.3.1 Simple super-resolution schemes 12
 2.3.2 Methods using a generative model 13
 2.3.3 Super-resolution using statistical prior image models 14

3 Registration: Geometric and Photometric 17
 3.1 Introduction 17
 3.2 Imaging geometry 18
 3.3 Estimating homographies 20
 3.3.1 Linear estimators 20
 3.3.2 Non-linear refinement 21
 3.3.3 The maximum likelihood estimator of H 21
 3.4 A practical two-view method 22
 3.5 Assessing the accuracy of registration 26
 3.5.1 Assessment criteria 26
 3.5.2 Obtaining a ground-truth homography 26
 3.6 Feature-based vs. direct methods 34
 3.7 Photometric registration 37
 3.7.1 Sources of photometric difference 37
 3.7.2 The photometric model 37
 3.7.3 Estimating the parameters 37
 3.7.4 Results 38
3.8 Application: Recovering latent marks in forensic images 40
 3.8.1 Motivation .. 40
 3.8.2 Method ... 40
 3.8.3 Further examples 42
 3.9 Summary ... 45

4 Image Mosaicing .. 47
 4.1 Introduction .. 47
 4.2 Basic method ... 47
 4.2.1 Outline ... 48
 4.2.2 Practical considerations 49
 4.3 Rendering from the mosaic 51
 4.3.1 The reprojection manifold 51
 4.3.2 The blending function 54
 4.3.3 Eliminating seams by photometric registration 57
 4.3.4 Eliminating seams due to vignetting 57
 4.3.5 A fast alternative to median filtering 58
 4.4 Simultaneous registration of multiple views 59
 4.4.1 Motivation .. 59
 4.4.2 Extending the two-view framework to N-views 63
 4.4.3 A novel algorithm for feature-matching over N-views . 66
 4.4.4 Results ... 68
 4.5 Automating the choice of reprojection frame 70
 4.5.1 Motivation .. 70
 4.5.2 Synthetic camera rotations 73
 4.6 Applications of image mosaicing 75
 4.7 Mosaicing non-planar surfaces 76
 4.8 Mosaicing “user’s guide” 76
 4.9 Summary ... 77
 4.9.1 Further examples 78

5 Super-resolution: Maximum Likelihood and Related Approaches 81
 5.1 Introduction .. 81
 5.2 What do we mean by “resolution”? 82
 5.3 Single-image methods 83
 5.4 The multi-view imaging model 84
 5.4.1 A note on the assumptions made in the model 86
 5.4.2 Discretization of the imaging model 86
 5.4.3 Related approaches 87
 5.4.4 Computing the elements in \mathbb{H}_n 88
 5.4.5 Boundary conditions 94
 5.5 Justification for the Gaussian PSF 95
 5.6 Synthetic test images 96
 5.7 The average image 97
 5.7.1 Noise robustness 100
 5.8 Rudin’s forward-projection method 105
Image Mosaicing and Super-resolution
Capel, D.
2004, XII, 218 p., Hardcover
ISBN: 978-1-85233-771-1