<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.6 Ideal Energy Sources and Sinks</td>
<td>59</td>
</tr>
<tr>
<td>2.5.7 Sensors</td>
<td>62</td>
</tr>
<tr>
<td>2.6 Pseudo Bond Graphs</td>
<td>63</td>
</tr>
<tr>
<td>2.7 Systematic Construction of Bond Graphs</td>
<td>66</td>
</tr>
<tr>
<td>2.7.1 Construction of Bond graphs for Mechanical Subsystems (Translation and Fixed-axis Rotation)</td>
<td>66</td>
</tr>
<tr>
<td>2.7.2 Construction of Bond Graphs for Non-mechanical Subsystems</td>
<td>70</td>
</tr>
<tr>
<td>2.7.3 Simplification of Some Bond Graph Structures</td>
<td>81</td>
</tr>
<tr>
<td>2.8 Some Remarks on the Choice of Orientations in Bond Graphs</td>
<td>82</td>
</tr>
<tr>
<td>2.9 Conclusion</td>
<td>85</td>
</tr>
<tr>
<td>References</td>
<td>87</td>
</tr>
</tbody>
</table>

3 Derivation of Mathematical Models from Bond Graphs | 89 |
3.1 On the Form of a Mathematical Model	89
3.2 The Concept of Computational Causality	92
3.2.1 The Notion of Computational Causality	92
3.2.2 Representation of Computational Causalities in Bond Graphs	93
3.2.3 Activated Bonds	94
3.2.4 Rules for Causality Assignment at the Ports of Bond Graph Elements	96
3.3 Sequential Assignment of Computational Causalities	101
3.4 On the Choice of State Variables	104
3.5 Systematic Derivation of Equations from a Bond Graph	109
3.5.1 Procedure for the Manual Derivation of Equations from a Causal Bond Graph	112
3.5.2 Application of the Procedure to Some Examples	112
3.6 Independent State Variables	119
3.7 Determination of the Number of Independent State Variables	123
3.8 Conclusion	126
References	128

4 Causal Bond Graphs and Forms of Mathematical Models | 129 |
4.1 Causal Paths Between Resistive Ports	129
4.2 Some Fundamentals from the Theory of Differential-Algebraic Systems	134
4.3 Inserting Energy Stores into Causal Paths Between Resistive Ports	139
4.4 Causal Paths Between Storage Ports of the Same Type	142
4.5 Closed Causal Paths	145
4.6 Bond Graphs with Causal Paths from Different Classes	150
4.7 Causal Loops of Unity Loop Gain	153
4.8 Algebraic Loops due to Internal Modulation	158
4.9 The Method of Relaxed Causalities	162
4.10 Lagrange Causalities	166
4.10.1 Identification of Generalised Coordinates in a Bond Graph 167
4.10.2 Determination of Generalised Forces from a Bond Graph 167
4.10.3 Derivation of Lagrange Equations from a Bond Graph 168

4.11 Conclusion ... 171

References .. 174

5 Computing Mathematical Models Derived from Bond Graphs 177
5.1 Numerical Solution of Differential-Algebraic Systems 177
5.1.1 The Backward Differentiation Formula 177
5.1.2 Problems with the Numerical Solution of DAEs by Means of the BDF 179
5.2 Reduction of the Index of a Differential-Algebraic System 182
5.3 Reduction of Hamiltonian Equations of Motion with Constraints 189
5.4 Tearing of Algebraic Constraints 195
5.4.1 Causal Paths Between Resistive Ports 198
5.4.2 Causal Conflicts at Junctions 203
5.4.3 Causal Paths Between Storage Ports of the Same Type 205
5.4.4 Causal Loops 209
5.5 The Perturbation Index of Differential-Algebraic Equations 215
5.6 Conclusion ... 217

References .. 220

6 Analysis of Causal Bond Graph Models 223
6.1 Equations Determining the Steady-state of a Dynamic System 224
6.2 Transfer Functions 227
6.2.1 Transfer Functions from the State Space Model 228
6.2.2 Transfer Functions from a Signal Flow Graph 229
6.2.3 Transfer Functions Directly from a Causal Bond Graph 231
6.3 Equations of the Inverse System 235
6.4 Structural Controllability and Observability 240
6.4.1 Structural Controllability 240
6.4.2 Structural Observability 244
6.5 Parameter Sensitivities 249
6.5.1 Incremental Models of Linear Bond Graph Elements 250
6.5.2 Derivation of Parameter Frequency Domain Sensitivities from an Incremental Bond Graph 254
6.6 State Equations for Robustness Study 261
6.6.1 Incremental Models of Linear Bond Graph Elements Revisited 262
6.6.2 Derivation of the Canonical Form of State Equations from an Incremental Bond Graph 265
6.6.3 The Standard Interconnection Form 269
6.6.4 Outline of the Uncertainty Bond Graph Approach 271
6.7 Bicausal Bond Graphs 276
6.7.1 Bicausal Bond Graphs for Parameter Estimation 279
6.7.2 Bicausal Bond Graphs for System Inversion 280
6.7.3 Bicausal Bond Graphs for State Estimation 282
6.8 Bond Graph Model-based Fault Detection and Isolation 282
 6.8.1 Analytical Redundancy Relations 283
 6.8.2 Structural Fault Signature Matrices 286
 6.8.3 Fault Isolation 287
 6.8.4 Residual Sinks in Bond Graph Model-based Fault
 Detection .. 288
6.9 Reduction of Model Complexity 292
 6.9.1 Model Partitioning 292
 6.9.2 Model Reduction 293
 6.9.3 Structural Model Simplification 294
6.10 Conclusion ... 297
References .. 299

7 Models of Variable Structure 305
 7.1 Bond Graph Models with Fixed Causalities 306
 7.1.1 Extending Element Characteristics 306
 7.1.2 Switching Between System Modes by means of
 Modulation 308
 7.1.3 Switched Power Junctions 313
 7.1.4 Switching Off Degrees of Freedom by Sinks of Invariant
 Causality 317
 7.2 Variable Causality Bond Graphs 331
 7.2.1 Ideal Switches as Another Basic Bond Graph Element... 331
 7.2.2 Controlled Junctions – Hybrid Bond Graphs 337
 7.3 A Combined Petri Net – Bond Graph Representation 340
 7.4 Conclusion ... 346
References .. 349

8 Multibody Systems ... 353
 8.1 Brief Survey of Bond Graph Modelling of Multibody Systems ... 353
 8.2 Multibond Graphs 354
 8.2.1 Multibonds and Arrays of Bond Graph Elements ... 355
 8.2.2 Multiport Energy Storage Elements 356
 8.2.3 Multiport Transformers and Gyroators 358
 8.2.4 Rotation of a Rigid Body in Space Described by a
 Multiport Gyroator 359
 8.2.5 Multiport Resistors 364
 8.2.6 Splitting a Multibond 365
 8.3 Bond Graph Modelling of the 3D Motion of Multibody Systems ... 366
 8.3.1 Multibond Graph of a Freely Moving Rigid Body ... 366
 8.3.2 Connecting Instances of the Rigid Body Model 369
 8.3.3 Multibond Graph Model of a Revolute Joint 370
 8.3.4 Multibond Graph Model of a Prismatic Joint 370
8.3.5 Multibond Graph of a Three Degrees of Freedom Robot . . 372
8.3.6 Causalities in Multibond Graphs 372
8.4 The Joint Coordinate Method 374
8.4.1 Formulation of a Reduced Set of Equations of Motion 376
8.4.2 Reduction of the Equations of Motion: Transformation
 of I Stores in the Bond Graph 377
8.4.3 Deriving the Reduced Form of Equations of Motion
 from the Bond Graph 379
8.4.4 Application of the Procedure to a Planar Pendulum 380
8.5 Software for Modelling and Simulation of Multibody Systems . . 385
8.6 Conclusion .. 385
References .. 387

9 Bond Graph Approximation of Distributed Parameter Models . . 391
9.1 Approximation of a One-dimensional Distributed Parameter
 Model by an Oscillator Chain 392
9.2 Brief Survey of Bond Graph Approximations of Distributed
 Parameter Models ... 394
9.3 Modal Analysis ... 394
 9.3.1 The Bernoulli-Euler Beam 394
 9.3.2 A Modal Bond Graph Model of the Bernoulli-Euler Beam 397
 9.3.3 State Space Approximation 398
 9.3.4 Features of the Generic Modal Beam Bond Graph Model 399
 9.3.5 Further Aspects of the Generic Modal Beam Bond
 Graph Model .. 400
 9.3.6 Flexible Mechanical Structures 405
9.4 Finite Element Method 407
 9.4.1 Classical Finite Element Method Revisited.............. 408
 9.4.2 Bond Graph Representation of Finite Element Models . 412
9.5 Conclusion .. 418
References .. 421

10 Bond Graph Modelling of Open Thermodynamic Systems 425
10.1 Modelling Thermodynamic Systems by Pseudo Bond Graphs 426
 10.1.1 Pseudo Bond Graph of a Heated Stirred Tank 427
 10.1.2 Pseudo Bond Graph of a Variable Pneumatic Control
 Volume .. 431
 10.1.3 Pseudo Bond Graph of a Compressible Fluid Flow
 Through an Orifice 434
 10.1.4 Pseudo Bond Graph of a Pneumatic Bridge Circuit 436
10.2 True Bond Graph Models of Thermodynamic Systems 438
 10.2.1 True Bond Graph of a Variable Pneumatic Control Volume 438
 10.2.2 True Bond Graph of a Pneumatic Outlet Orifice 445
 10.2.3 Further True Bond Graph Approaches to the Modelling
 of Thermodynamic Systems 446
11 Automated Modelling

11.1 Continuous System Simulation Languages

11.2 Object-Oriented Modelling Languages

11.2.1 Connection of Submodels According to the Physical Structure of the System

11.2.2 Algebraic Loops

11.2.3 Algebraic Dependencies Between State Variables

11.3 Bond Graph Modelling from an Object-Oriented Point of View

11.4 Describing Bond Graphs in SIDOPS

11.5 Describing Bond Graphs in Modelica

11.5.1 Bond Graph Power Ports and Their Interconnection

11.5.2 Basic Bond Graph Elements

11.5.3 Computational Causality

11.5.4 Hierarchical Bond Graphs

11.6 Software for Bond Graph Modelling

11.6.1 ENPORT™

11.6.2 TUTSIM™

11.6.3 Bond Graph Preprocessors

11.6.4 Bond Graph Toolboxes

11.6.5 Integrated Modelling and Simulation Environments

11.6.6 Transformation Between Different Model Description Forms

11.7 Exchange and Reuse of Bond Graph Models

11.7.1 Useful XML Features for the Description and Processing of Bond Graph Models

11.7.2 Information that an Exchange Format for Bond Graphs Should Capture

11.7.3 A Schema for an XML Based Description of Combined Bond Graph and Block Diagram Models

11.7.4 Pseudo Bond Graphs in BGML

11.7.5 Controlled Junctions in BGML

11.7.6 Supporting the Exchange and Reuse of Submodels

11.7.7 Transforming the BGML Description of a Bond Graph Model into a Target Language

11.7.8 XML Based Bond Graph Component Model Libraries

11.8 Conclusion

References
12 Applications

12.1 Inverted Pendulum ... 561
12.2 Shunt Motor .. 566
12.3 A Machine with an Unbalanced Rotor 570
12.4 An Electronic Balance with Displacement Compensation 575
12.5 A Piezoelectric Seismometer 582
12.6 Engagement of a Clutch 589
12.7 Dry Friction in a Suspension Strut of a Car 593
12.8 A Buck Converter .. 601
12.9 A Two Degrees of Freedom Rotary Joint Manipulator 610
12.10 Fluid Level Control in a Three Tank System 616
12.11 Fault Detection in a Hydraulic Two Tank System 621
12.12 Heated Stirred Tank .. 629
12.13 A Counterflow Heat Exchanger 633
12.14 Conclusion .. 638
References .. 639

13 Overall Conclusion and Outlook

References ... 648

Glossary ... 651

Index .. 657
Bond Graph Methodology
Development and Analysis of Multidisciplinary Dynamic System Models
Borutzky, W.
2010, XXII, 662 p., Hardcover
ISBN: 978-1-84882-881-0