Contents

1. **Basic Terminology, Notation and Results** 1
 1.1 Sets, Matrices and Vectors .. 1
 1.2 Digraphs, Subdigraphs, Neighbours, Degrees 2
 1.3 Isomorphism and Basic Operations on Digraphs 6
 1.4 Walks, Trails, Paths, Cycles and Path-Cycle Subdigraphs 11
 1.5 Strong and Unilateral Connectivity 15
 1.6 Undirected Graphs, Biorientations and Orientations 18
 1.7 Trees and Euler Trails in Digraphs 21
 1.8 Mixed Graphs, Orientations of Digraphs, and Hypergraphs 24
 1.9 Depth-First Search .. 26
 1.10 Exercises ... 29

2. **Classes of Digraphs** .. 31
 2.1 Acyclic Digraphs ... 32
 2.2 Multipartite Digraphs and Extended Digraphs 34
 2.3 Transitive Digraphs, Transitive Closures and Reductions 36
 2.4 Line Digraphs ... 39
 2.5 The de Bruijn and Kautz Digraphs 44
 2.6 Series-Parallel Digraphs ... 47
 2.7 Quasi-Transitive Digraphs .. 52
 2.8 Path-Mergeable Digraphs ... 55
 2.9 Locally In/Out-Semicomplete Digraphs 57
 2.10 Locally Semicomplete Digraphs 59
 2.10.1 Round Digraphs .. 60
 2.10.2 Non-Strong Locally Semicomplete Digraphs 61
 2.10.3 Strong Round Decomposable Locally Semicomplete
 Digraphs ... 63
 2.10.4 Classification of Locally Semicomplete Digraphs 66
 2.11 Totally \(\Phi\)-Decomposable Digraphs 69
 2.12 Planar Digraphs ... 71
 2.13 Digraphs of Bounded Width ... 73
 2.13.1 Digraphs of Bounded Tree-Width 74
 2.13.2 Digraphs of Bounded Directed Widths 78
 2.14 Other Families of Digraphs .. 80
2.14.1 Circulant Digraphs ... 80
2.14.2 Arc-Locally Semicomplete Digraphs 81
2.14.3 Intersection Digraphs 82
2.15 Exercises .. 84

3. Distances .. 87
3.1 Terminology and Notation on Distances 87
3.2 Structure of Shortest Paths 89
3.3 Algorithms for Finding Distances in Digraphs 91
 3.3.1 Breadth-First Search (BFS) 92
 3.3.2 Acyclic Digraphs ... 93
 3.3.3 Dijkstra’s Algorithm 94
 3.3.4 The Bellman-Ford-Moore Algorithm 97
 3.3.5 The Floyd-Warshall Algorithm 99
3.4 Inequalities on Diameter 100
3.5 Minimum Diameter of Orientations of Multigraphs 103
3.6 Minimum Diameter Orientations of Some Graphs and Digraphs108
 3.6.1 Generalizations of Tournaments 108
 3.6.2 Extended Digraphs .. 111
 3.6.3 Cartesian Products of Graphs 113
 3.6.4 Chordal Graphs .. 114
3.7 Kings in Digraphs .. 115
 3.7.1 2-Kings in Tournaments 115
 3.7.2 Kings in Semicomplete Multipartite Digraphs 116
 3.7.3 Kings in Generalizations of Tournaments 118
3.8 \((k, l)\)-Kernels ... 119
 3.8.1 Kernels .. 119
 3.8.2 Quasi-Kernels ... 122
3.9 Exercises ... 123

4. Flows in Networks ... 127
4.1 Definitions and Basic Properties 127
 4.1.1 Flows and Their Balance Vectors 128
 4.1.2 The Residual Network 130
4.2 Reductions Among Different Flow Models 131
 4.2.1 Eliminating Lower Bounds 131
 4.2.2 Flows with One Source and One Sink 132
 4.2.3 Circulations ... 133
 4.2.4 Networks with Bounds and Costs on the Vertices 134
4.3 Flow Decompositions ... 136
4.4 Working with the Residual Network 137
4.5 The Maximum Flow Problem 140
 4.5.1 The Ford-Fulkerson Algorithm 142
 4.5.2 Maximum Flows and Linear Programming 145
4.6 Polynomial Algorithms for Finding a Maximum \((s, t)\)-Flow . 146
4.6.1 Augmenting Along Shortest Augmenting Paths 147
4.6.2 Maximal Flows in Layered Networks 148
4.6.3 The Push-Relabel Algorithm 149

4.7 Unit Capacity Networks and Simple Networks 153
4.7.1 Unit Capacity Networks 153
4.7.2 Simple Networks 155

4.8 Circulations and Feasible Flows 156
4.9 Minimum Value Feasible \((s, t)\)-Flows 158

4.10 Minimum Cost Flows 160
4.10.1 Characterizing Minimum Cost Flows 162
4.10.2 Building up an Optimal Solution 166
4.10.3 The Assignment and the Transportation Problem 169

4.11 Applications of Flows 170
4.11.1 Maximum Matchings in Bipartite Graphs 170
4.11.2 The Directed Chinese Postman Problem 174
4.11.3 Finding Subdigraphs with Prescribed Degrees 176
4.11.4 Path-Cycle Factors in Directed Multigraphs 177

4.12 Exercises 179

5. Connectivity of Digraphs 191
5.1 Additional Notation and Preliminaries 192
5.1.1 The Network Representation of a Directed Multigraph 194

5.2 Finding the Strong Components of a Digraph 195
5.3 Ear Decompositions 198
5.4 Menger’s Theorem 201

5.5 Determining Arc- and Vertex-Strong Connectivity 204
5.6 Minimally \(k\)-(Arc)-Strong Directed Multigraphs 207
5.6.1 Minimally \(k\)-Arc-Strong Directed Multigraphs 207
5.6.2 Minimally \(k\)-Strong Digraphs 213

5.7 Critically \(k\)-Strong Digraphs 218
5.8 Connectivity Properties of Special Classes of Digraphs 220
5.9 Disjoint X-Paths in Digraphs 223
5.10 Exercises 223

6. Hamiltonian, Longest and Vertex-Cheapest Paths and Cycles 227
6.1 Complexity 228
6.2 Hamilton Paths and Cycles in Path-Mergeable Digraphs 230
6.3 Hamilton Paths and Cycles in Locally In-Semicomplete Di-
graphs 231

6.4 Hamilton Cycles and Paths in Degree-Constrained Digraphs 233
6.4.1 Sufficient Conditions 233
6.4.2 The Multi-Insertion Technique 239
6.4.3 Proofs of Theorems 6.4.1 and 6.4.5 240
6.5 Longest Paths and Cycles in Degree-Constrained Oriented Graphs .. 243
6.6 Longest Paths and Cycles in Semicomplete Multipartite Di- graphs .. 244
6.6.1 Basic Results .. 245
6.6.2 The Good Cycle Factor Theorem 247
6.6.3 Consequences of Lemma 6.6.12 250
6.6.4 Yeo’s Irreducible Cycle Subdigraph Theorem and Its Applications .. 253
6.7 Hamilton Paths and Cycles in Quasi-Transitive Digraphs 256
6.8 Vertex-Cheapest Paths and Cycles 260
6.8.1 Vertex-Cheapest Paths and Cycles in Quasi-Transitive Digraphs .. 260
6.8.2 Minimum Cost k-Path-Cycle Subdigraphs 261
6.8.3 Cheapest i-Path Subdigraphs in Quasi-Transitive Di- graphs .. 263
6.8.4 Finding a Cheapest Cycle in a Quasi-Transitive Digraph .. 265
6.9 Hamilton Paths and Cycles in Various Classes of Digraphs 265
6.10 Exercises .. 271

7. Restricted Hamiltonian Paths and Cycles 275
7.1 Hamiltonian Paths with a Prescribed End-Vertex 275
7.2 Weakly Hamiltonian-Connected Digraphs 277
7.2.1 Results for Extended Tournaments 277
7.2.2 Results for Locally Semicomplete Digraphs 283
7.3 Hamiltonian-Connected Digraphs 286
7.4 Hamiltonian Cycles Containing or Avoiding Prescribed Arcs ... 289
7.4.1 Hamiltonian Cycles Containing Prescribed Arcs 290
7.4.2 Avoiding Prescribed Arcs with a Hamiltonian Cycle 292
7.4.3 Hamiltonian Cycles Avoiding Arcs in 2-Cycles 295
7.5 Arc-Traceable Digraphs 296
7.6 Oriented Hamiltonian Paths and Cycles 297
7.7 Exercises .. 303

8. Paths and Cycles of Prescribed Lengths 307
8.1 Pancyclicity of Digraphs 307
8.1.1 (Vertex-)Pancyclicity in Degree-Constrained Digraphs . 308
8.1.2 Pancyclicity in Extended Semicomplete and Quasi- Transitive Digraphs 309
8.1.3 Panhypercyclic and Vertex-Panhypercyclic Semicomplete Digraphs 312
8.1.4 Further Pancyclicity Results 315
8.1.5 Cycle Extendability in Digraphs 317
8.1.6 arc-Pancyclicity 318
8.2 Colour Coding: Efficient Algorithms for Paths and Cycles 320
8.3 Cycles of Length \(k \) Modulo \(p \) ... 324
8.3.1 Complexity of the Existence of Cycles of Length \(k \) Modulo \(p \) Problems ... 324
8.3.2 Sufficient Conditions for the Existence of Cycles of Length \(k \) Modulo \(p \) ... 326
8.4 Girth ... 329
8.5 Short Cycles in Semicomplete Multipartite Digraphs 332
8.6 Exercises ... 336

9. Branchings ... 339
9.1 Tutte’s Matrix Tree Theorem ... 339
9.2 Optimum Branchings ... 342
9.2.1 Matroid Intersection Formulation 343
9.2.2 A Simple Algorithm for Finding a Minimum Cost Out-Branching ... 344
9.3 Arc-Disjoint Branchings ... 345
9.4 Implications of Edmonds’ Branching Theorem 348
9.5 Out-Branchings with Degree Bounds 351
9.6 Arc-Disjoint In- and Out-Branchings ... 354
9.7 Out-Branchings with Extremal Number of Leaves 358
9.7.1 Minimum Leaf Out-Branchings ... 359
9.7.2 Maximum Leaf Out-Branchings ... 361
9.8 The Source Location Problem ... 363
9.9 Miscellaneous Topics ... 365
9.9.1 Edge-Disjoint Mixed Branchings ... 365
9.9.2 The Minimum Covering Out-Tree Problem 366
9.9.3 Minimum Cost Arc-Disjoint Branchings with Bandwidth Constraints ... 367
9.9.4 Out-Forests ... 368
9.9.5 The Maximum Weight Out-Forest Problem 368
9.9.6 Branchings and Edge-Disjoint Trees 370
9.10 Exercises ... 370

10. Linkages in Digraphs ... 373
10.1 Additional Definitions and Preliminaries 373
10.2 The Complexity of the \(k \)-Linkage Problem 375
10.3 Sufficient Conditions for a Digraph to Be \(k \)-Linked 379
10.4 The \(k \)-Linkage Problem for Acyclic Digraphs 382
10.5 Linkages in (Generalizations of) Tournaments 385
10.5.1 Sufficient Conditions in Terms of (Local-)Connectivity 385
10.5.2 The 2-Linkage Problem for Semicomplete Digraphs 389
10.5.3 The 2-Linkage Problem for Generalizations of Tournaments ... 391
10.6 Linkages in Planar Digraphs ... 394
10.7 Weak Linkages ... 398
10.7.1 Weak Linkages in Acyclic Directed Multigraphs 400
10.7.2 Weak Linkages in Eulerian Directed Multigraphs 401
10.7.3 Weak Linkages in Tournaments and Generalizations of
Tournaments ... 407
10.8 Linkages in Digraphs with Large Minimum Out-Degree 410
10.8.1 Subdivisions of Transitive Tournaments in Digraphs of
Large Out-Degree 411
10.9 Miscellaneous Topics 412
10.9.1 Universal Arcs in 2-Cyclic Digraphs 412
10.9.2 Integer Multicommodity Flows 413
10.10 Exercises .. 414

11. Orientations of Graphs and Digraphs 417
11.1 Underlying Graphs of Various Classes of Digraphs 417
11.1.1 Underlying Graphs of Transitive and Quasi-Transitive
Digraphs ... 418
11.1.2 Underlying Graphs of Locally Semicomplete Digraphs 421
11.1.3 Local Tournament Orientations of Proper Circular Arc
Graphs ... 423
11.1.4 Underlying Graphs of Locally
In-Semicomplete Digraphs 426
11.2 Orientations with No Even Cycles 428
11.3 Colourings and Orientations of Graphs 431
11.4 Orientations and Nowhere-Zero Integer Flows 435
11.5 Orientations Achieving High Arc-Strong Connectivity .. 441
11.5.1 k-Arc-Strong Orientations 441
11.5.2 Well-Balanced and Best-Balanced Orientations 443
11.5.3 Simultaneous Best-Balanced Orientations 444
11.5.4 Best-Balanced Orientations of Eulerian Multigraphs 445
11.6 k-Strong Orientations 446
11.7 Orientations Respecting Degree Constraints 448
11.7.1 Orientations with Prescribed Degree Sequences 448
11.7.2 Restrictions on Subsets of Vertices 452
11.8 Submodular Flows 453
11.8.1 Submodular Flow Models 454
11.8.2 Existence of Feasible Submodular Flows 455
11.8.3 Minimum Cost Submodular Flows 458
11.8.4 Applications of Submodular Flows 459
11.9 Orientations of Mixed Multigraphs 461
11.10 k-(Arc)-Strong Orientations of Digraphs 466
11.11 Miscellaneous Topics 470
11.11.1 Another Measure of Well-Balancedness 470
11.11.2 Orienting to Preserve Reachability
for Prescribed Pairs 470
11.12 Exercises ... 472
12. Sparse Subdigraphs with Prescribed Connectivity 479
 12.1 Minimum Strong Spanning Subdigraphs 480
 12.1.1 Digraphs with High Minimum Degree 482
 12.2 Polynomially Solvable Cases of the MSSS Problem 483
 12.2.1 The MSSS Problem for Extended Semicomplete Digraphs 484
 12.2.2 The MSSS Problem for Quasi-Transitive Digraphs 485
 12.3 Approximation Algorithms for the MSSS Problem 487
 12.3.1 A Simple 7/4-Approximation Algorithm 487
 12.3.2 Better Approximation Algorithms 488
 12.4 Small Certificates for k-(Arc)-Strong Connectivity 489
 12.4.1 Small Certificates for k-Strong Connectivity ... 490
 12.4.2 Small Certificates for k-Arc-Strong Connectivity ... 491
 12.4.3 Certificates for Directed Multigraphs 494
 12.5 Minimum Weight Strong Spanning Subdigraphs 497
 12.6 Directed Steiner Problems 498
 12.7 Miscellaneous Topics 501
 12.7.1 The Directed Spanning Cactus Problem 501
 12.7.2 An FTP Algorithm for the MSSS Problem 501
 12.7.3 Minimum Cost Strong Subdigraphs 502
 12.8 Exercises .. 503

13. Packings, Coverings and Decompositions 505
 13.1 Packing Directed Cuts: The Lucchesi-Younger Theorem 505
 13.2 Packing Dijoins: Woodall’s Conjecture 511
 13.3 Packing Cycles .. 512
 13.4 Arc-Disjoint Hamiltonian Paths and Cycles 515
 13.5 Path Factors .. 519
 13.6 Cycle Factors with the Minimum Number of Cycles 521
 13.7 Cycle Factors with a Fixed Number of Cycles 525
 13.8 Cycle Subdigraphs Covering Specified Vertices 528
 13.9 Proof of Gallai’s Conjecture 529
 13.10 Decomposing a Tournament into Strong Spanning Subdigraphs 536
 13.11 The Directed Path-Partition Conjecture 542
 13.12 Miscellaneous Topics 546
 13.12.1 Maximum One-Way Cuts and Covering by One-Way Cuts 546
 13.12.2 Acyclic Decompositions of Digraphs 548
 13.12.3 Decomposing Tournaments into Strong Subtournaments 548
 13.12.4 Decomposing Digraphs under Degree Constraints 549
 13.13 Exercises ... 550
14. Increasing Connectivity ... 553
 14.1 The Splitting Off Operation 553
 14.2 Increasing the Arc-Strong Connectivity Optimally 557
 14.3 Increasing the Vertex-Strong Connectivity Optimally 562
 14.3.1 One-Way Pairs .. 563
 14.3.2 Optimal k-Strong Augmentation 565
 14.3.3 Special Classes of Digraphs 566
 14.4 Arc Reversals and Vertex-Strong Connectivity 568
 14.5 Arc-Reversals and Arc-Strong Connectivity 570
 14.5.1 Determining $r_{deg}^k(D)$ Efficiently 571
 14.5.2 Reversals of Arcs to Achieve High Arc-Strong Connectivity in Tournaments 572
 14.6 Increasing Connectivity by Deorienting Arcs 573
 14.7 Miscellaneous Topics .. 576
 14.7.1 Increasing Arc-Strong Connectivity of a Bipartite Di- graph .. 576
 14.7.2 Augmenting Arc-Strong Connectivity in Directed Hypergraphs 577
 14.7.3 Weighted Versions of Local Arc-Connectivity Problems .. 578
 14.8 Exercises ... 580

15. Feedback Sets and Vertex Orderings 583
 15.1 Two Conjectures on Feedback Arc Sets 584
 15.2 Optimal Orderings in Tournaments 585
 15.3 Complexity of the Feedback Set Problems 586
 15.3.1 NP-Completeness Results 587
 15.3.2 FAS for Planar Digraphs 590
 15.3.3 Approximation Algorithms 591
 15.3.4 Fixed-Parameter Tractability Results 593
 15.4 Disjoint Cycles Versus Feedback Sets 596
 15.4.1 Relations Between Parameters ν_i and τ_i 596
 15.4.2 Solution of Younger's Conjecture 598
 15.5 Optimal Orderings and Seymour's Second Neighbourhood Conjecture .. 600
 15.6 Ádám's Conjecture .. 603
 15.7 Exercises ... 605

 16.1 Terminology, Notation and Initial Observations 608
 16.2 Properly Coloured Euler Trails 610
 16.3 Properly Coloured Cycles 613
 16.4 Gadget Graphs and Shortest PC Cycles and (s, t)-Paths 617
 16.4.1 P-Gadgets ... 617
 16.4.2 P-Gadget Graphs ... 618
 16.5 Long PC Cycles and Paths 621
16.6 Connectivity of Edge-Coloured Multigraphs 622
16.7 Alternating Cycles in 2-Edge-Coloured Bipartite Multigraphs 625
16.8 Paths and Cycles in 2-Edge-Coloured Complete Multigraphs . 628
16.9 PC Paths and Cycles in c-Edge-Coloured Complete Graphs, $c \geq 3$... 635
16.10 Exercises .. 640

17. Applications of Digraphs and Edge-Coloured Graphs 643
17.1 A Digraph Model in Quantum Mechanics 643
 17.1.1 Lower Bound for $\mu(n)$ 644
 17.1.2 Families of Sets and $\mu(n)$ 644
 17.1.3 Upper Bounds for $\mu(n)$ 646
 17.1.4 When $\mu(n) > f(n)$ 647
 17.1.5 Mediated Digraphs in Quantum Mechanics 647
17.2 Embedded Computing and Convex Sets in Acyclic Digraphs . 649
 17.2.1 Embedded Computing Systems and Convex Sets 649
 17.2.2 Bounds for the Number of Convex Sets 650
 17.2.3 Algorithms for Generating Convex and Connected
 Convex Sets .. 652
17.3 When Greedy-Like Algorithms Fail 655
 17.3.1 Greedy Algorithm ... 656
 17.3.2 Max-Regret Algorithms 659
17.4 Domination Analysis of ATSP Heuristics 660
 17.4.1 ATSP Heuristics with Factorial Domination Numbers .. 662
 17.4.2 Upper Bounds on Domination Numbers 664
17.5 Solving the 2-Satisfiability Problem 666
17.6 Alternating Hamilton Cycles in Genetics 670
 17.6.1 Proof of Theorem 17.6.1 672
 17.6.2 Proof of Theorem 17.6.2 673
17.7 Gaussian Elimination ... 674
17.8 Markov Chains ... 677
17.9 List Edge-Colourings ... 679
17.10 Digraph Models of Bartering 683
17.11 PERT/CPM in Project Scheduling 685
17.12 Finite Automata .. 687
17.13 Puzzles and Digraphs ... 689
17.14 Gossip Problems .. 690
17.15 Deadlocks of Computer Processes 692
17.16 Exercises .. 694

18. Algorithms and Their Complexity 695
18.1 Combinatorial Algorithms ... 696
18.2 \mathcal{NP}-Complete and \mathcal{NP}-Hard Problems 700
18.3 The Satisfiability Problem 702
18.4 Fixed-Parameter Tractability and Intractability 703
Digraphs
Theory, Algorithms and Applications
Bang-Jensen, J.; Gutin, G.Z.
2009, XXII, 798 p. 175 illus., Hardcover
ISBN: 978-1-84800-997-4