Disorders of the Pediatric Chest

Margaret A. Chase and Derek S. Wheeler

Introduction

The lungs are unique in that they are internal organs, yet they are constantly exposed to a barrage of foreign substances from both the internal environment—at any one point in time, they receive approximately half of the cardiac output—and the external environment—with each breath, they are exposed to pollens, viruses, bacteria, smoke, and so forth. There is a virtual cornucopia of diseases that affect the human respiratory tract, many of which are specific to the pediatric chest. According to the Centers for Disease Control and Prevention, chronic respiratory tract diseases and pneumonia were the seventh and eighth leading causes of deaths in children aged 1–19 years in 2002 [1]. Dr. George A. Gregory, one of the founding fathers of pediatric critical care medicine, once stated that acute respiratory failure accounts for approximately 50% of all admissions to the pediatric intensive care unit (PICU) [2]. Just as important are the myriad of respiratory disease processes that are not associated with acute respiratory failure but nevertheless constitute a major portion of the practice of pediatric critical care medicine, some of which result in significant morbidity and mortality [3]. In this chapter, we review some of these disease processes as a general introduction to the respiratory system in critical illness, and the remainder of these disorders are discussed in greater detail in subsequent chapters.

Congenital Anomalies of the Tracheobronchial Tree

Congenital anomalies of the trachea (e.g., tracheomalacia, tracheal stenosis, tracheoesophageal fistula) are described in subsequent chapters in this textbook and are not discussed further here.

Bronchomalacia

Bronchomalacia frequently coexists with tracheomalacia (some authors prefer the term tracheobronchomalacia) [4–8]. Malacia refers to an intrinsic defect of the cartilaginous support of the airway, causing the affected portion of the airway to collapse whenever the extraluminal pressure exceeds the intraluminal pressure (e.g., during forced exhalation, crying). Primary (congenital) and secondary (acquired) forms exist. Tracheobronchomalacia is frequently found in association with gastroesophageal reflux, cardiovascular anomalies (especially vascular rings, pulmonary slings, etc.), and tracheoesophageal fistula [5,7,8]. Affected children typically present with respiratory distress, wheezing, chronic cough, and recurrent pneumonia. Historically, tracheotomy and long-term mechanical ventilatory support have been the mainstays of treatment, although recent technologic improvements in noninvasive positive pressure ventilation will likely improve the outcome of children with this disease. Surgical treatment options include resection of affected segments, pexy procedures (aortopexy, bronchopexy, etc.), and stenting [9–13].

Tracheal Bronchus

The tracheal bronchus (also commonly referred to as a pig bronchus) encompasses a variety of congenital bronchial anomalies, although an anomalous right upper lobe bronchus arising from the lateral wall of the trachea is most commonly described [14–16]. This anomaly occurs in 0.1%–5% of the population [17–19] and is frequently associated with other congenital anomalies, such as tracheoesophageal fistula, tracheal stenosis, and Down’s syndrome [15,16,20–23]. Affected children are usually asymptomatic, although the diagnosis should be entertained for critically ill children with persistent or recurrent upper-lobe pneumonia, atelectasis, or air trapping on chest radiograph [20]. Although most children can be managed conservatively, surgical resection of the involved lung segment may be necessary when symptoms are severe [14,16,20].

Bronchial Atresia

Congenital bronchial atresia (CBA) is rare and most commonly affects the upper lobes of the lung. In most cases, the atresia affects either a proximal segmental or subsegmental bronchus. Development of the structures distal to the affected segment is unaffected.
however, and mucus often accumulates in the affected lung segments, leading to the formation of a bronchocele with surrounding areas of hyperinflation [24,25]. Although frequently detected as an incidental finding on chest radiograph, CBA occasionally results in recurrent infections of affected lung segments [24]. Lobectomy or segmentectomy of the affected areas is curative but only occasionally necessary [26,27].

Bronchogenic Cysts

Bronchogenic cysts arise from abnormal budding of tracheobronchial tissue during embryogenesis. The respiratory system develops as an outpouching of the embryonic foregut. Therefore, histologically, bronchogenic cysts are lined with ciliated epithelium and frequently contain cartilage, smooth muscle, mucus glands, nerve tissue, and occasionally gastric epithelium. They may be air filled, mucus filled, or both [16,28]. These cysts are single, unilocular, and spherical in shape and are usually classified by their location in the thorax (central or mediastinal bronchogenic cysts and peripheral or pulmonary bronchogenic cysts) [16,28]. Most bronchogenic cysts are asymptomatic and are detected as an incidental finding on chest radiograph [16,28]. However, respiratory distress may be precipitated by enlargement of the cyst with subsequent airway compromise. Additional complications include rupture of the cyst into a bronchus or the pleura with hemorrhage, recurrent infections, and abscess formation. Surgery is indicated when these cysts are symptomatic, and most authors advocate surgical resection upon diagnosis because of the risk of associated complications [16,28–30].

Congenital Anomalies of the Lung

Congenital Lobar Emphysema

Congenital lobar emphysema (CLE) is characterized by massive distension of one or more affected lobes of the lung, most commonly the left upper lobe [16,28,30–33]. Congenital lobar emphysema is the most common congenital lung anomaly and is thought to arise from a ball-valve type of bronchial obstruction resulting in progressive air trapping and hyperinflation [16,28,33]. This bronchial obstruction is idiopathic in most cases, although extrinsic vascular compression and bronchomalacia have occasionally been implicated [34–38]. Congenital heart disease is present in 10% of affected infants [28]. Congenital lobar emphysema appears to be more common in males than in females and typically presents before 6 months of age. Respiratory distress is the most common clinical presentation [16,28,33,37,38]. Chest radiography will demonstrate hyperinflation of affected lobes, and CLE is frequently confused with pneumothorax [39]. Surgical resection of the affected lobe is curative [16,28–33,39].

Congenital Cystic Adenomatoid Malformation

Congenital cystic adenomatoid malformations (CCAM) are the second most common congenital lung anomalies and represent maldevelopment of the terminal bronchiolar structures during early lung embryogenesis. Congenital cystic adenomatoid malformation consists of a multicystic, dysplastic mass of pulmonary tissue and typically presents either prenatally on routine ultrasound or during the neonatal period with severe respiratory dis-

tress. Management depends on the extent of disease, and prognosis is variable [16,26,28–31,33,36,40]. Malignant transformation of CCAM (high incidence of rhabdomyosarcoma) has been described such that surgical resection is probably indicated even when the lesion is asymptomatic [41–44].

Congenital Diaphragmatic Hernia

Congenital diaphragmatic hernia results from a defect in the diaphragm that allows evisceration of abdominal contents into the thorax (the left hemithorax in the vast majority of cases) (Figure 2.1). Congenital diaphragmatic hernia is frequently detected on prenatal ultrasound, and severely affected fetuses often die before birth. More than 50% of cases have additional congenital anomalies (i.e., cardiac, genitourinary, and chromosomal anomalies). Although the majority of cases present with severe respiratory compromise immediately after birth, late presentation beyond the immediate neonatal period occasionally occurs and is typically milder [16,28,45,46]. Definitive surgery includes decompression of the lungs by reduction of the abdominal viscera and primary closure of the diaphragmatic defect. The majority of affected children will have some degree of pulmonary hypoplasia as well as pulmonary artery hypertension resulting from increased muscularization of the intraacinar pulmonary arteries, a small cross-sectional area of the pulmonary vascular bed, and abnormal pulmonary vasoconstriction, all of which will impact long-term outcome [16,28,47,48].

Pulmonary Sequestration

Pulmonary sequestration is defined as a lung segment that receives its blood supply from an anomalous systemic artery and does not communicate with the tracheobronchial tree [16,26,28,29,31,33,
Traditionally, sequestrations are divided into extralobar, in which the abnormal lung segment lies within its own pleura and is located more posteriorly in the chest, and intralobar, in which the abnormal lung segment lies within the pleural cavity in close contact with the normal lung. Venous drainage of intralobar sequestrations is usually via the pulmonary veins, whereas extralobar sequestrations drain to the systemic venous circulation via the azygos vein, hemiazygos vein, or vena cava. The vast majority of sequestrations affect the lower lobes, usually on the left. Intralobar sequestrations are frequently acquired anomalies that arise from recurrent infections or bronchial obstruction. Extralobar sequestrations, on the other hand, are congenital and usually diagnosed at an earlier age because of a higher incidence of associated anomalies. There is a 4:1 male:female preponderance for extralobar sequestrations, whereas intralobar sequestrations affect both equally. Infants present with recurrent lower respiratory infections, reactive airway disease, and, occasionally, hemoptysis. Treatment of pulmonary sequestration is resection; extralobar tissue can be treated with resection alone, and intralobar lesions will usually require lobectomy [16,26,28,31,33,49–51].

Scimitar Syndrome

The scimitar syndrome, also called congenital venolobar syndrome, is a rare congenital anomaly classically described by (1) partial or complete anomalous pulmonary venous drainage of the right lung to the inferior vena cava, (2) hypoplasia of the right lung, (3) hypoplasia of the right pulmonary artery, (4) dextrocardia, and (5) anomalous systemic arterial supply of the right lower lobe of the lung from the subdiaphragmatic descending aorta or its branches [16,52–55]. The majority of children are asymptomatic; however, clinical presentation depends to a great extent on significance of the resulting left-to-right shunt. Two forms are commonly described [56–59]. The infantile form is usually associated with a variety of congenital anomalies, including additional congenital heart defects such as coarctation of the aorta, tetralogy of Fallot, and ventricular septal defect. Affected children are prone to recurrent pneumonia, congestive heart failure, and pulmonary hypertension [57–59]. The adult form is characterized by a small left-to-right shunt with minor symptoms and lack of associated anomalies [56,59]. Surgical management of the scimitar syndrome is often dependent on the clinical presentation and is therefore age dependent [59–61]. Indications for surgery include (1) the presence of a large left-to-right shunt with consequent pulmonary hypertension and heart failure and (2) recurrent pneumonia caused by pulmonary sequestration [61]. Surgical management includes ligation of the anomalous systemic artery, reimplantation of the scimitar vein to the left atrium, and resection of the sequestration [59–62]. Postoperative pulmonary venous obstruction or pulmonary hypertension is frequent and greatly impacts outcome.

Atelectasis

The term atelectasis is derived from the Greek words atele and ektasis, which literally mean incomplete expansion. Atelectasis is associated with a variety of respiratory diseases and may be identified in as many as 15% of children admitted to the PICU [74–77]. Atelectasis occurs by three mechanisms: (1) compression of lung parenchyma by intrathoracic, chest wall, or extrathoracic disease processes (compression atelectasis); (2) obstruction of airways with subsequent gas resorption (resorption atelectasis); and (3) increased surface tension in small airways and alveoli (Table 2.1) [78–80]. Compression atelectasis occurs when the distending pressure (i.e., transmural pressure) that keeps an alveolus open is reduced below a certain threshold, allowing the alveolus to collapse. The dependent lung regions are the areas most commonly affected by this type of atelectasis.

Resorption atelectasis occurs via one of two possible mechanisms. In the first, complete airway obstruction creates a pocket of trapped gas in the alveoli distal to the obstruction. As the affected lung region is perfused, but not ventilated, gas is absorbed and the alveoli eventually collapse. The second mechanism is a conse-

<table>
<thead>
<tr>
<th>Compression atelectasis</th>
<th>Extrinsic bronchial compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumors</td>
<td></td>
</tr>
<tr>
<td>Lymph nodes</td>
<td></td>
</tr>
<tr>
<td>Cardiomegaly (e.g., congenital heart disease, congestive heart failure)</td>
<td></td>
</tr>
<tr>
<td>Vascular rings</td>
<td></td>
</tr>
<tr>
<td>Congenital lobar emphysema</td>
<td></td>
</tr>
<tr>
<td>Compression of lung parenchyma</td>
<td></td>
</tr>
<tr>
<td>Chylothorax</td>
<td></td>
</tr>
<tr>
<td>Hemothorax</td>
<td></td>
</tr>
<tr>
<td>Pneumothorax</td>
<td></td>
</tr>
<tr>
<td>Tumors</td>
<td></td>
</tr>
<tr>
<td>Resorption atelectasis</td>
<td>Intrabronchial obstruction</td>
</tr>
<tr>
<td>Obstructive airways disease (e.g., asthma, cystic fibrosis, bronchiolitis)</td>
<td>Foreign body</td>
</tr>
<tr>
<td>Intrinsic secretions and/or mucous plugs</td>
<td>Cystic fibrosis</td>
</tr>
<tr>
<td>Sickle cell disease and acute chest syndrome</td>
<td>Administration of High FiO2, in the setting of low V\textsubscript{A}/Q</td>
</tr>
<tr>
<td>Surfactant deficiency or dysfunction</td>
<td>Infant respiratory distress syndrome (hyaline membrane disease)</td>
</tr>
<tr>
<td></td>
<td>Acute respiratory distress syndrome</td>
</tr>
<tr>
<td></td>
<td>Pneumonia</td>
</tr>
<tr>
<td></td>
<td>Pulmonary edema</td>
</tr>
<tr>
<td></td>
<td>Near-drowning</td>
</tr>
</tbody>
</table>

2. Disorders of the Pediatric Chest
sequence of oxygen being more readily absorbed than nitrogen. As a result, the rate of absorption of the gas increases with the fractional concentration of oxygen in the alveoli. Administration of either supplemental oxygen or mechanical ventilation with high fractional inspired oxygen (FiO₂) can result in resorption atelectasis, especially in lung zones with low ventilation to perfusion (Vₐ/Q) ratios. Finally, loss or dysfunction of surfactant results in increased surface tension in small airways and alveoli, leading to lung collapse. All three mechanisms likely contribute to atelectasis in acute lung injury and its more severe form, the acute respiratory distress syndrome [78–80].

Young children are particularly susceptible to atelectasis compared with older children and adults [74,75,77,78,80]. As previously discussed, the child’s airways are smaller than the adult’s and have a higher peripheral airways resistance [81,82]. The child’s airways are therefore more susceptible to obstruction by inspissated secretions or mucus. In addition, children are more susceptible to dynamic airway compression because of weak cartilaginous support [83,84]. Finally, the collateral pathways of ventilation (pores of Kohn and Lambert’s canals) are less well developed in children than adults [78,80,83–86] such that airway obstruction leads to air trapping and subsequent collapse via resorption atelectasis. Children also appear to differ from adults with respect to the distribution of atelectasis as well. The upper lobes, especially the right upper lobe, appear to be more commonly affected in critically ill children admitted to the PICU [74–77]. Collapse of the lower lobes, especially the left lower lobe, appears to be more common in critically ill adults.

Atelectasis compromises pulmonary function by affecting both mechanical properties of the lung as well as gas exchange. According to the Laplace relationship, smaller airways (e.g., collapsed or atelectatic areas of lung) require a greater opening pressure to reinflate and reexpand. As the lung now requires higher pressures to inflate, atelectasis causes a significant reduction in lung compliance. Atelectasis also leads to ventilation–perfusion mismatch, leading to gas exchange abnormalities and hypoxemia. Atelectasis may also result in a compensatory overdistention of adjacent alveoli, especially in the setting of airways obstruction and obstructive atelectasis [78,80,86]. Additional consequences of atelectasis can include bronchiectasis, pneumonia, and lung abscess, which result from retained, infected secretions within the collapsed lung and not atelectasis per se.

A chest radiograph is often required to document the presence, extent, and distribution of atelectasis (Figure 2.2). Opacification may represent areas of either collapse or consolidation. However, loss of lung volume with movement of the diaphragm, mediastinum, and major fissures toward the affected areas are highly suggestive of collapse (discussed later in the chapter on respiratory monitoring).

The management of atelectasis is tailored to the etiology as well as the prevention of subsequent complications (e.g., inspissated secretions and worsening airways obstruction, hypoxemia, infection). Several new modalities to facilitate reexpansion of atelectatic alveoli in the PICU are available, although few randomized, controlled clinical trials exist to support the merits of one modality over another [78,80,86,87]. Vigorous coughing, the use of incentive spirometry, and chest physiotherapy are frequently employed [88–91]. In recalcitrant cases, or those associated with neuromuscular disease or cystic fibrosis (CF), assisting devices such as intermittent positive pressure breathing [90,91], cough-assist insufflation/exsufflation therapy [92,93], or noninvasive bilevel positive pressure ventilation (BiPAP) [92–97] may be helpful. The use of recombinant DNase (rhDNase), which is approved for use in CF patients, has also been employed in persistent atelectasis, especially in those cases that are caused by resorption atelectasis secondary to obstruction by inspissated secretions. DNase is thought to improve atelectasis by decreasing the viscosity of secretions and assisting mucociliary clearance, thereby relieving airways obstruction [98–

Figure 2.2. Right middle lobe atelectasis in a 3-year-old child admitted to the pediatric intensive care unit with status asthmaticus. (A) Anteroposterior view. (B) Lateral view. (Courtesy of Corning Benton, MD, Cincinnati Children’s Hospital Medical Center.)
Compensated Late decompensation

Pulmonary Edema

Pathophysiology

Pulmonary edema is defined simply as an abnormal accumulation of fluid in the lung. The net flow of fluid across the alveolar–capillary membrane is generally expressed using the Starling equation, as follows:

\[Q_f = K_f \left[(P_C - P_T) - \sigma (\pi_C - \pi_T) \right] \]

where \(Q_f \) is equal to the net flow across the alveolar–capillary membrane; \(K_f \) is the filtration coefficient, which takes into account the contribution of the permeability and surface area of the alveolar–capillary membrane; \(P_C \) is equal to the capillary hydrostatic pressure; \(P_T \) is equal to the interstitial fluid hydrostatic pressure; \(\sigma \) is the reflection coefficient of the alveolar–capillary membrane (\(\sigma = 1 \) if the membrane is completely impermeable to protein, and \(\sigma = 0 \) if the membrane is completely permeable to protein); \(\pi_C \) is the capillary oncotic pressure; and \(\pi_T \) is the interstitial oncotic pressure.

Under normal physiologic conditions, \(P_C \) is gravity dependent and ranges from 8 to 12 mm Hg, whereas \(P_T \) is estimated at -2 to -10 mm Hg. The balance of hydrostatic pressures therefore overwhellingly favors net fluid movement out of the pulmonary capillary. Normally, \(\pi_C \) approximates 25 mm Hg, and \(\pi_T \) ranges between 10 and 15 mm Hg. Given that \(\sigma \) is between 0.7 and 0.95, the balance of oncotic pressures tends to favor a relatively small amount of net fluid movement into the pulmonary capillary. Therefore, under normal conditions, the balance of Starling forces across the alveolar–capillary membrane favors a net flow of fluid out from the microvascular space into the interstitium (Figure 2.3) [reviewed in 112–116].

Several factors protect against the development of pulmonary edema. If the alveolar–capillary membrane is able to retard the movement of proteins (i.e., \(\sigma \) remains unchanged), the increased fluid that enters the interstitium will lower the interstitial oncotic pressure and thereby oppose interstitial fluid accumulation. In addition, the increased interstitial hydrostatic pressure that results from this fluid accumulation will abolish the normal hydrostatic pressure gradient and further oppose fluid movement into the interstitium. Finally, the lymphatics have a tremendous capacity to clear any fluid that accumulates within the lung interstitium. Once these defensive mechanisms are overcome, fluid begins to accumulate in a relatively predictable manner [117]. Fluid first accumulates in the loose interstitial tissue surrounding small blood vessels and airways. Alveolar fluid next accumulates in the corners of the alveolus, and, if edema persists, fluid eventually completely fills the alveolus (Figure 2.4).

The last decade has witnessed a dramatic increase in our understanding of the normal fluid clearance mechanisms of the lung. Importantly, the lung’s ability to clear pulmonary edema (regardless of mechanism) correlates with improved survival in critical illnesses such as sepsis, acute lung injury, and congestive heart failure [118–120]. Under normal conditions, alveolar fluid clearance is dependent on the active transport of \(Na^+ \) and \(Cl^- \) (with water following) across the lung epithelium, a process that depends on \(Na^+/K^+ \) ATPase, intercellular tight junctions, and \(Na^- \) ion channels [reviewed in 115,116,121,122]. Recent evidence suggests that alveolar lung clearance is partly regulated by endogenous \(\beta \)-adrenergic receptors, leading some investigators to suggest that aerosolized \(\beta \)-adrenergic agonists may be helpful in patients with acute lung injury and acute respiratory distress syndrome [120,122–126].

Etiology

Factors that increase the pulmonary capillary pressure, such as left ventricular failure or valvular regurgitation, serve to increase the driving force through the capillary wall into the interstitium and lead to fluid accumulation. This aspect of fluid accumulation, however, is not limited to cardiogenic causes and can also be seen in pulmonary veno-occlusive disease and other processes impairing pulmonary venous drainage (Figure 2.5A). Plasma oncotic pressure, often reflected in the child’s serum albumin level, can also play a role in the accumulation of pulmonary edema (Figure 2.5B). In illnesses such as protein losing enteropathy or nephrotic syndrome, with increased protein losses, or those with decreased

![Figure 2.3](image-url) Starling forces across the pulmonary capillary endothelium. \(Q_f \) is net flow across the alveolar–capillary membrane; \(K_f \) is filtration coefficient; \(P_C \) is capillary hydrostatic pressure; \(P_T \) is interstitial fluid hydrostatic pressure; \(\sigma \) is reflection coefficient of the alveolar–capillary membrane (\(\sigma = 1 \) if the membrane is completely impermeable to protein, and \(\sigma = 0 \) if the membrane is completely permeable to protein); \(\pi_C \) is capillary oncotic pressure; and \(\pi_T \) is interstitial oncotic pressure.

![Figure 2.4](image-url) Pattern of alveolar fluid accumulation. (Adapted from Staub et al. [117].)
protein production, such as hepatic disease or malnutrition, the forces promoting return of fluid into the vascular space are decreased. These children develop systemic extravascular fluid overload, of which pulmonary edema can be the most clinically significant. In general, alteration of capillary membrane permeability is seen as a result of insult to the membrane itself (Figure 2.5C). In the PICU population, this is frequently a consequence of infection (either pulmonary or systemic) or acute respiratory distress syndrome. Leaky capillaries can also be attributed to circulating toxins such as chemotherapy or even endogenous mediators of the immune system such as leukotrienes, tumor necrosis factor-α, or histamine. Similarly, direct toxins, such as smoke, chemical irritants, or even water in near-drowning can injure the endothelium and alter permeability, predisposing to pulmonary edema.

An additional but poorly understood mechanism of pulmonary edema is that resulting from increased negative interstitial pressure or postobstructive pulmonary edema. It is most often seen in those disorders associated with upper airway obstruction such as croup, foreign body aspiration, severe acute asthma, or laryngospasm after the obstruction is relieved. High negative intrathoracic pressure causes increases in cardiac preload, afterload, and pulmonary blood flow, which in turn increase the microvascular pressure driving fluid into the interstitium. This may be an additional etiology of edema in those children experiencing smoke inhalation or near-drowning.

Neurogenic pulmonary edema is similarly not fully understood but may be associated with a massive sympathetic discharge. This release in catecholamines and the subsequent increase in sympathetic tone that follows may increase pulmonary and systemic vasoconstriction, shifting blood to the pulmonary vasculature, increasing capillary pressure, and leading to edema formation. There may also be a component of increased capillary permeability from stress failure or hypoxia-related injury of the capillary endothelium contributing to pulmonary edema formation.

Clinical Consequences

The presence of fluid in the interstitial and alveolar spaces serves to decrease lung compliance and increase atelectasis. Most commonly, children with pulmonary edema develop some component of respiratory distress. This may be seen through increased work of breathing in an attempt to maintain minute ventilation or desaturations as V/Q mismatch progresses or to increase ventilator requirements in those already with respiratory failure. Physical examination of the lung fields may reveal wheezing and fine crackles. Chest radiograph serves as the main diagnostic tool (Figure 2.6). Early in the process, peribronchial and perivascular cuffing may be observed, resulting from interstitial edema. Lung fields demonstrating increased pulmonary vascular markings and cardiomegaly may be seen with edema arising from left ventricular dysfunction. Progressively, as edema begins to fill the alveolar spaces, diffuse patchy densities may be appreciated.

Management

Primary management of pulmonary edema should be directed at correcting the underlying disturbance that led to pulmonary edema. Often this is easier said than done, and supportive care of the patient focusing on respiratory stabilization and decreasing pulmonary edema is pursued. Removal of excessive interstitial and alveolar fluid can be attempted with diuretics [127]. However, diuretics such as furosemide probably work because of their effects on venous capacitance and not via the induced diuresis [112–116].

![Figure 2.5](image.png)

FIGURE 2.5. Mechanisms of pulmonary edema. (A) ↑ PC. (B) ↓ πC. (C) ↓ σ.

![Figure 2.6](image.png)

FIGURE 2.6. Pulmonary edema in an 11-month-old child with congestive heart failure. (Courtesy of Corning Benton, MD, Cincinnati Children’s Hospital Medical Center.)
Supportive care with noninvasive ventilation is often helpful, as it decreases the work of breathing and provides a constant level of positive end-expiratory pressure, stenting open alveoli and forcing out excess fluid—although efforts to minimize further ventilator-induced lung injury are crucial as well. For those patients on the ventilator or with severe distress requiring ventilation, increased levels of positive end-expiratory should be employed for the same reasons. Additionally, dependent areas of the lung are at increased risk of developing pulmonary edema, and therefore frequent changes in patient position or even prone ventilation may help to mobilize fluid, resolve associated atelectasis, and redistribute areas of V/Q mismatch. For those patients with hypoalbuminemia and pulmonary edema, there may be some benefit of albumin supplementation in decreasing edema fluid [127]. Finally, as discussed earlier, aerosolized β-adrenergic agonists may help augment alveolar fluid clearance and relieve pulmonary edema [120,122–126].

Diseases of the Pleural Space

Pleural Effusions

The pleural membrane is a thin, double-layered membrane that separates the lung from the chest wall, diaphragm, and mediastinum. The outer layer, called the **parietal pleura**, covers the inner surface of the chest wall, including the mediastinum, diaphragm, and ribs. The inner layer, called the **visceral pleura**, covers the entire surface of the lungs, including the interlobar fissures, except for the hilus, where the pulmonary blood vessels, bronchi, and nerves enter the lung tissue. The mediastinum completely separates the right and left pleural spaces. Under normal conditions, the two pleurae are separated by a thin space (pleural space) that contains a small amount of serous fluid. This fluid provides a frictionless surface between the two pleurae in response to changes in lung volume with respiration. Essentially an ultrafiltrate of plasma, normal pleural fluid is clear in appearance, with a pH of 7.60–7.64, a protein content less than 2% (1–2 g/dL), fewer than 1,000 WBCs per cubic millimeter, a glucose content similar to that of plasma, and a lactate dehydrogenase level less than 50% of plasma [128,129].

A pleural effusion (Figure 2.7) is broadly defined as an abnormal collection of fluid in the space between the parietal and visceral pleurae and may arise from a variety of processes that alter the normal flow and absorption of pleural fluid. These can include changes in the permeability of the pleural membrane (e.g., pneumonia, malignancy), reduction in intravascular oncotic pressure (e.g., hypoalbuminemia), increased capillary hydrostatic pressure (e.g., congestive heart failure, SVC syndrome), or decreased lymph drainage or lymphatic obstruction (e.g., thoracic duct trauma) [128,129]. The most common causes of pleural effusions in children are pneumonia (parapneumonic effusion), congenital heart disease, and malignancy [128,129]. A diagnostic or therapeutic thoracentesis is usually indicated to determine the nature of the effusion as well as to relieve associated dyspnea and respiratory compromise.

When performing a thoracentesis, the child is seated, leaning over a table or supine if that is not possible. The preferred entry is at the seventh intercostal space along the posterior axillary line. This area is cleaned and draped in sterile fashion and local anesthesia provided to the subcutaneous tissue, rib periosteum, and pleura with 1% lidocaine. An 18–22 gauge intravenous catheter over a needle or large-bore needle is attached to a syringe and advanced with steady negative pressure through the skin, onto the rib, and guided over the superior aspect of the rib, taking care to avoid the neurovascular bundle running beneath. Advancement of the needle is halted once fluid is obtained, and, if an intravenous or pigtail catheter with guidewire is used, the catheter may be advanced into the pleural space. Fluid is removed, and, once drainage is complete, the needle or catheter is removed and an occlusive dressing placed over the site. A chest radiograph should be obtained after the procedure to rule out pneumothorax.

Depending on analysis of the fluid obtained, pleural effusions may be classified into either transudates or exudates. In transuda-
Parapneumonic Effusions and Empyema

Nearly one-half of all children with pneumonia will develop a parapneumonic effusion, although less than 5% of these effusions progress to empyema (see Chapter 17 for additional discussion). An otherwise uncomplicated parapneumonic effusion does not usually warrant immediate drainage. However, if the effusion persists despite antibiotic therapy, or certainly if the effusion is associated with respiratory compromise, drainage via tube thoracostomy is generally indicated.

Historically, the microorganisms most commonly isolated from parapneumonic effusions and empyemas during childhood have been Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, and Haemophilus influenzae. Multiple modalities exist for the treatment of empyema, including thoracentesis, chest tube drainage, instillation of fibrinolytic therapy into the pleural cavity, called a bronchopleural fistula (BPF). A BPF may result from the rupture of a lung abscess, cyst, or bulla or from injury to the bronchus or lung parenchyma from trauma or mechanical ventilation. Additional sources include erosion of the bronchus by carcinoma or chronic inflammation as well as the breakdown of suture lines after pulmonary resection (more common in adults). The presence of a BPF is typically heralded by the return or increase in the air leak of the chest tube system or, in the absence of a chest tube, the occurrence of a pneumothorax. Diagnosis may be confirmed by bronchoscopy, but occasionally additional radiologic or contrast studies are used. Bronchopleural fistulae are difficult to manage and are associated with a poor prognosis. Typically, patients are treated aggressively with antibiotics and continued drainage, but often surgical closure is required.

Chylothorax

A chylothorax is defined as the accumulation of chyle within the pleural space, usually occurring because of injury to the thoracic duct or a derangement of lymphatic flow within the thorax. Chylothorax is the most common type of neonatal pleural effusion, often resulting from birth trauma, congenital malformations, or increased venous pressure from thrombosis of central venous catheters. Chyle is classically described as a white, milky, opaque fluid, although this appearance is seen in less than half of all patients with a chylothorax. In children, chylothorax is commonly iatrogenic, following surgical correction or palliation of congenital heart disease. Treatment includes drainage (via tube thoracostomy) and the institution of a low-fat (or medium-chain triglyceride)/high-protein diet. There are reports of successful treatment of chylothorax with the somatostatin analog octreotide; however, no controlled trials exist to document benefit [134–141]. For refractory cases, surgical ligation of the thoracic duct is indicated [142].

Hemothorax

The presence of blood in the pleural space with a hematocrit equal to 50% of that of peripheral blood constitutes a hemothorax. Excessive bleeding into the pleural cavity is rare in children but may be seen after trauma or as a complication of surgery. Chest tube placement and surgical intervention to control active bleeding are required.

Pneumothorax

A pneumothorax is defined as an accumulation of air in the pleural space. By convention, a small pneumothorax occupies 15% or less of the pleural space, a moderate pneumothorax occupies 15%–60% of the pleural space, and a large pneumothorax occupies more than 60% of the pleural space. Pneumothoraces are commonly classified into three types (simple, communicating, and tension). A simple (also called closed or noncommunicating) pneumothorax exists when there is no direct communication with the atmosphere. Additionally, there is no mediastinal shift resulting from the accumulated air (Figure 2.8). A simple pneumothorax is a common complication of nonpenetrating trauma to the chest in which one or more fractured ribs lacerates or punctures the visceral pleura and lung parenchyma, causing an escape of air from the lung into the pleural space. A pneumothorax in this setting may also occur in the absence of rib fracture when the impact is delivered at a full inspiration with the glottis closed, leading to a drastic increase in
intraalveolar pressure and subsequent rupture of the alveoli. Finally, a simple pneumothorax may occur as a consequence of barotrauma or volutrauma during positive pressure mechanical ventilatory support.

A communicating or open pneumothorax is associated with an open defect in the chest wall, most commonly occurring as a complication of penetrating chest trauma. As intrathoracic pressure is always less than atmospheric pressure (i.e., negative intrathoracic pressure) during spontaneous breathing, air rapidly accumulates in the pleural space. Loss of negative intrathoracic pressure results in varying degrees of lung collapse and further respiratory compromise.

A tension pneumothorax is caused by progressive accumulation of air in the pleural space (Figure 2.9). This collection of air shifts the mediastinum to the contralateral hemithorax and compresses the contralateral lung and great vessels, compromising both cardiovascular and respiratory function. Whether the air enters the pleural space through a defect in the chest wall, a lacerated or ruptured bronchus, or a ruptured alveolus, a one-way valve effect is created such that air enters during inhalation but cannot exit during exhalation. Accumulation of air continues until the intrathoracic pressure of the affected hemithorax equilibrates with atmospheric pressure. At this point, the accumulation of pressure within the thorax leads to depression of the ipsilateral hemidiaphragm and displacement of the mediastinum (and associated great vessels) toward the contralateral hemithorax. While the superior vena cava (SVC) is able to move to some extent, the inferior vena cava (IVC) is relatively fixed within the diaphragm and will be compressed (kinked). As two-thirds of the venous return in children comes from below the diaphragm, compression of the IVC leads to a drastic and profound reduction in venous return to the heart, leading to cardiovascular collapse (obstructive shock) [143].

The clinical presentation of a pneumothorax will depend on its size, how rapidly it has accumulated, and whether or not it is under tension. Classic signs and symptoms include chest pain (often radiating to the tip of the ipsilateral shoulder), dyspnea, tachypnea, tachycardia, and cyanosis. Diminished or absent breath sounds on the involved side with displacement of the trachea toward the contralateral side are often detected on physical examination. A tension pneumothorax will present with cardiovascular collapse and profound respiratory distress. The chest radiograph is the preferred imaging study and should be obtained unless the clinical condition warrants immediate treatment, although small pneumothoraces are often missed on initial chest x-ray. Computed tomography is superior to plain x-ray for detecting small pneumothoraces, although many of these are clinically insignificant and do not require intervention. Decompression via needle thoracentesis or tube thoracostomy is the treatment of choice (see later).

Pneumomediastinum

A pneumomediastinum is an abnormal collection of air within the mediastinal space. Most commonly, pneumomediastinum results from microscopic alveolar rupture. There is some evidence that this may occur earlier in the continuum of pressure-induced injury, with the majority of ventilated patients developing pneumomediastinum before pneumothorax. As with pneumothorax, those patients receiving high peak pressures on the ventilator are most at risk, but there may be spontaneous development as well [144–146]. Aside from alveolar disruption, however, pneumomediastinum can also result from air escaping from the esophagus, trachea, or upper respiratory tract. This free air may be the result of trauma [147–149], surgery, or iatrogenic injury during medical procedures such as tracheal intubation, upper GI endoscopy, and...
so forth. Pneumomediastinum may also result from retropharyngeal abscesses or other dental or oropharyngeal infections, especially those from gas-producing bacteria [144].

Pneumomediastinum is often asymptomatic, but, as mediastinal air may track into the subcutaneous tissues of the neck and chest, crepitus may develop. The patient may complain of chest pain, neck pain, or dyspnea. Diagnosis is typically made by chest x-ray (Figure 2.10). Isolated pneumomediastinum usually resolves without treatment, but, if severe, with cardiac compromise, or as a consequence of tracheal or esophageal rupture, surgical intervention is required. Turlapati et al. described a technique for placement of mediastinal tubes at the bedside for emergency decompression of hemodynamically significant pneumomediastinum [150].

Chest Tubes

The Physics of Chest Tubes

Chest tubes have been employed since the days of Hippocrates. The chest tube and collecting system have undergone some changes since then, with the closed tube thoracostomy being put into widespread use for hemothorax following the Korean conflict. Currently, the indications for chest tube use include significant pleural effusion, hemothorax, chylothorax, pneumothorax, empyema, and malignant effusion. Although these conditions can occasionally be managed through observation and thoracentesis, often chest tube placement is required.

The closed tube system consists of three chambers. The collection chamber is connected to the patient through the chest tube and is also connected to a water seal chamber. A water seal chamber serves as a one-way valve, preventing return of the drained fluid to the patient. The water seal chamber is then connected to a third chamber that controls the amount of suction applied to the pleural space (Figure 2.11) [151,152].

Placement of Chest Tubes

The placement of a thoracotomy tube varies somewhat on the medium that is to be drained. Pigtail catheters placed via Seldinger technique in the midaxillary line of the fifth intercostal space have become a common alternative to traditional, more invasive chest tubes, especially for the pediatric population [153]. These tubes are very useful in draining transudative effusions or air and can be placed with minimal sedation. Pigtail tubes, in general, are more comfortable for the patient while in place. They are, however, limited by their caliber and are more prone to clogging, especially with chylous, grossly bloody, or purulent pleural fluid collections.

In those circumstances when pigtail catheters fail or are inappropriate because of more viscous media in the pleura, a traditional thoracostomy tube should be placed. Here, the patient is placed supine with the involved side elevated 10°–20° from the bed. The lateral chest wall is prepped and draped in a sterile fashion, and, after local anesthesia is administered, a small transverse incision is made at the intercostal space below that selected for the chest tube (typically the fifth intercostal space). With a clamp or scissors, blunt dissection is used to separate skin and chest wall. The intercostal muscles are then separated over the edge of the fifth rib with a blunt clamp, and the parietal pleura is penetrated. With the tip of a gloved finger, the tract and penetration of the pleural space is verified. The tip of the plastic catheter (size ranging from 20 to 36 F) is then inserted through the tract and directed toward the most dependent portion of the lung. The tube is then secured in place and attached to the collecting system as described earlier.

Chest Tube Management

After insertion, chest tubes should be monitored daily to evaluate the amount and quality of the drainage, the presence of bubbling (i.e., air leak), and movement of the fluid with respiration to ensure patency and correct positioning. Reexpansion pulmonary edema has been reported after drainage of large effusions or
FIGURE 2.11. The classic chest tube drainage system consists of three components: (1) water seal, (2) a mechanism to control suction, and (3) a collection reservoir. The first bottle is a water seal bottle and serves as a one-way valve. Air can bubble out through the water during expiration or coughing (A), but cannot return to the chest during inspiration (B). An air leak (air bubbling out from the patient during expiration or coughing) is present with residual pneumothorax or bronchopleural fistula. The same principle can be accomplished by placing the end of the chest tube in an open bottle of sterile water or with the use of a Heimlich valve. A second bottle is added in order to control the amount of negative pressure in the patient's pleural cavity (C). Suction applied directly to the water seal bottle (and without a vent) would result in excessive negative pressure and subsequent tissue damage. The underwater distance of the third tube in the suction bottle (vented on the other end) determines the amount of negative pressure in the system (in this case, -20 cm H$_2$O). Wall suction at -10 cm H$_2$O will result in a negative pressure in the bottle of -10 (and -20 wall suction $= -20$ in the bottle, but the negative pressure in the bottle will never exceed -20!). Negative pressure applied to the patient will equal the difference between the underwater distance of the water seal and the underwater distance in the suction bottle. Evaporative losses in the suction bottle or pleural fluid drainage into the water seal bottle will decrease negative pressure in the chest tube. The third bottle (D) therefore serves only to collect fluid draining from the patient and is connected as a fluid trap between the patient and water seal bottle. The concept of the three-bottle system is used in most chest tube drainage systems in the pediatric intensive care unit today (E). The chamber on the far left is the suction control chamber—this chamber is filled with sterile water to the desired amount of suction (usually -10 to -20 cm H$_2$O). The middle chamber (denoted by the letter C) is the water seal chamber—bubbling in the water seal chamber indicates the presence of an air leak (persistent pneumothorax, bronchopleural fistula, etc.). When the water seal chamber is filled to 2 cm as shown, a 2-cm water seal is established. The air leak meter indicates the approximate degree of air leak from the chest cavity—the higher the numbered column through which bubbling occurs, the greater the degree of air leak. The chamber denoted by the letter D is a safety mechanism that maintains an effective water seal in the event of excessive negative pressure. The calibrated manometer between the water seal chamber (C) and the safety chamber (B) measures the amount of negative pressure within the pleural cavity. As intrapleural pressure becomes more negative, the water level in this manometer rises. In the absence of an air leak, the water level here will rise and fall with the child's respirations, reflecting normal pressure changes in the pleural cavity (i.e., with spontaneous respiration, the water level will rise during inhalation and fall during exhalation—the converse is true with positive pressure ventilation). The chamber on the far right is the collection (chest tube drainage) chamber, denoted by the letter D.
pneumothoraces in both adults and children [154–156]. This potentially lethal complication of thoracostomy tube placement is fortunately quite rare. Young patients, especially those with spontaneous pneumothorax, appear to be at a greater risk [155,156]. Suggestions that have been proposed to minimize the risk of this rare complication include slow drainage of large pleural effusions, use of supplemental oxygen (if the patient is not on positive pressure ventilation), and avoiding or minimizing suction until the lung has reexpanded following placement of a chest tube for pneumothorax [155–157].

If the fluid drainage ceases suddenly, the tube may be kinked or blocked by exudative drainage. Evaluation of the drain especially at the exit site may alleviate the problem of kinking, and flushing the tube with a small amount (10 mL) of sterile normal saline may relieve blockage of pus or debris. If this does not restore fluid drainage and fluid persists by chest radiography, it may be that the tube has shifted, with its drainage ports resting outside the pleura, or that the fluid has become loculated and sequestered from drainage. In these instances the tube may need to be replaced or, in the case of loculations, fibrinolitics or VATS considered.

The timing of chest tube removal should be determined clinically, by resolution of symptoms and minimal chest tube drainage, commonly defined as 10–15 mL over 24 hr. Complete cessation of drainage should not be anticipated, as the presence of the chest tube itself may serve as a stimulus for fluid production. For those chest tubes placed for accumulation of air or pneumothorax, a period of observation after chest tube clamping is recommended to observe for reaccumulation of air or bronchopleural leak. It is often advisable to maintain pleural drainage in those patients who remain on positive pressure ventilation until they are weaned from the ventilator because of the increased risk of reaccumulation of air.

Once the decision to remove the chest tube has been made, the child should be provided with analgesia and sedation. Chest tube removal should be completed briskly, during the expiratory phase or with a Valsalva maneuver in a cooperative child. The site should be covered with an occlusive dressing and a chest x-ray obtained to evaluate for residual or recurrent pneumothorax.

References
2. Disorders of the Pediatric Chest

The Respiratory Tract in Pediatric Critical Illness and Injury
Wheeler, D.S.; Wong, H.R.; Shanley, Th.P. (Eds.)
2009, XIV, 254 p. 112 illus., 5 illus. in color., Softcover
ISBN: 978-1-84800-924-0