## Contents

**1 Introduction** .......................................... 1  
1.1 The Engineering Designer ............................... 1  
1.1.1 Tasks and Activities ............................... 1  
1.1.2 Position of the Design Process  
within a Company ........................................ 6  
1.1.3 Trends ............................................ 6  
1.2 Necessity for Systematic Design ....................... 9  
1.2.1 Requirements and the Need  
for Systematic Design .................................. 9  
1.2.2 Historical Background ............................. 10  
1.2.3 Current Methods ................................. 14  
1.2.4 Aims and Objectives of this Book ................. 19  

**2 Fundamentals** ......................................... 27  
2.1 Fundamentals of Technical Systems .................... 27  
2.1.1 Systems, Plant, Equipment, Machines,  
Assemblies and Components ............................ 27  
2.1.2 Conversion of Energy, Material and Signals .... 29  
2.1.3 Functional Interrelationship ...................... 31  
2.1.4 Working Interrelationship ....................... 38  
2.1.5 Constructional Interrelationship ................. 42  
2.1.6 System Interrelationship ......................... 42  
2.1.7 Systematic Guideline ............................ 43  
2.2 Fundamentals of the Systematic Approach ............ 45  
2.2.1 Problem Solving Process .......................... 45  
2.2.2 Characteristics of Good Problem Solvers ......... 49  
2.2.3 Problem Solving as Information Processing ....... 51  
2.2.4 General Working Methodology ................... 53  
2.2.5 Generally Applicable Methods ................... 58  
2.2.6 Role of Computer Support ....................... 62  

**3 Product Planning, Solution Finding and Evaluation** ........ 63  
3.1 Product Planning ..................................... 63  
3.1.1 Degree of Novelty of a Product ................... 64
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.2</td>
<td>Product Life Cycle</td>
<td>64</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Company Goals and Their Effect</td>
<td>65</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Product Planning</td>
<td>66</td>
</tr>
<tr>
<td>3.2</td>
<td>Solution Finding Methods</td>
<td>77</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Conventional Methods</td>
<td>78</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Intuitive Methods</td>
<td>82</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Discursive Methods</td>
<td>89</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Methods for Combining Solutions</td>
<td>103</td>
</tr>
<tr>
<td>3.3</td>
<td>Selection and Evaluation Methods</td>
<td>106</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Selecting Solution Variants</td>
<td>106</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Evaluating Solution Variants</td>
<td>109</td>
</tr>
<tr>
<td>4</td>
<td>Product Development Process</td>
<td>125</td>
</tr>
<tr>
<td>4.1</td>
<td>General Problem Solving Process</td>
<td>125</td>
</tr>
<tr>
<td>4.2</td>
<td>Flow of Work During the Process of Designing</td>
<td>128</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Activity Planning</td>
<td>128</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Timing and Scheduling</td>
<td>134</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Planning Project and Product Costs</td>
<td>136</td>
</tr>
<tr>
<td>4.3</td>
<td>Effective Organisation Structures</td>
<td>138</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Interdisciplinary Cooperation</td>
<td>138</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Leadership and Team Behaviour</td>
<td>141</td>
</tr>
<tr>
<td>5</td>
<td>Task Clarification</td>
<td>145</td>
</tr>
<tr>
<td>5.1</td>
<td>Importance of Task Clarification</td>
<td>145</td>
</tr>
<tr>
<td>5.2</td>
<td>Setting Up a Requirements List</td>
<td>146</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Contents</td>
<td>146</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Format</td>
<td>147</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Identifying the Requirements</td>
<td>149</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Refining and Extending the Requirements</td>
<td>151</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Compiling the Requirements List</td>
<td>152</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Examples</td>
<td>153</td>
</tr>
<tr>
<td>5.3</td>
<td>Using Requirements Lists</td>
<td>153</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Updating</td>
<td>153</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Partial Requirements Lists</td>
<td>156</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Further Uses</td>
<td>157</td>
</tr>
<tr>
<td>5.4</td>
<td>Practical Application of Requirements Lists</td>
<td>157</td>
</tr>
<tr>
<td>6</td>
<td>Conceptual Design</td>
<td>159</td>
</tr>
<tr>
<td>6.1</td>
<td>Steps of Conceptual Design</td>
<td>159</td>
</tr>
<tr>
<td>6.2</td>
<td>Abstracting to Identify the Essential Problems</td>
<td>161</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Aim of Abstraction</td>
<td>161</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Broadening the Problem Formulation</td>
<td>162</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Identifying the Essential Problems from the Requirements List</td>
<td>164</td>
</tr>
<tr>
<td>6.3</td>
<td>Establishing Function Structures</td>
<td>169</td>
</tr>
</tbody>
</table>
Contents

6.3.1 Overall Function .................................. 169
6.3.2 Breaking a Function Down into Subfunctions 170
6.3.3 Practical Applications of Function Structures 178

6.4 Developing Working Structures .......................... 181
6.4.1 Searching for Working Principles .................. 181
6.4.2 Combining Working Principles ....................... 184
6.4.3 Selecting Working Structures ......................... 186
6.4.4 Practical Application of Working Structures ....... 186

6.5 Developing Concepts ...................................... 190
6.5.1 Firming Up into Principle Solution Variants ....... 190
6.5.2 Evaluating Principle Solution Variants ............. 192
6.5.3 Practical Application of Developing Concepts ....... 198

6.6 Examples of Conceptual Design .......................... 199
6.6.1 One-Handed Household Water Mixing Tap .......... 199
6.6.2 Impulse-Loading Test Rig ............................ 210

7 Embodiment Design ........................................... 227
7.1 Steps of Embodiment Design ............................... 227
7.2 Checklist for Embodiment Design ......................... 233
7.3 Basic Rules of Embodiment Design ......................... 234
7.3.1 Clarity ............................................. 235
7.3.2 Simplicity .......................................... 242
7.3.3 Safety ............................................. 247

7.4 Principles of Embodiment Design ......................... 268
7.4.1 Principles of Force Transmission ....................... 269
7.4.2 Principle of the Division of Tasks ..................... 281
7.4.3 Principle of Self-Help .................................. 290
7.4.4 Principles of Stability and Bi-Stability ............... 301
7.4.5 Principles for Fault-Free Design ....................... 305

7.5 Guidelines for Embodiment Design ......................... 308
7.5.1 General Considerations ................................ 308
7.5.2 Design to Allow for Expansion ......................... 309
7.5.3 Design to Allow for Creep and Relaxation .............. 321
7.5.4 Design Against Corrosion .............................. 328
7.5.5 Design to Minimise Wear ................................ 340
7.5.6 Design for Ergonomics ................................ 341
7.5.7 Design for Aesthetics .................................. 348
7.5.8 Design for Production .................................. 355
7.5.9 Design for Assembly .................................. 375
7.5.10 Design for Maintenance ................................ 385
7.5.11 Design for Recycling .................................. 388
7.5.12 Design for Minimum Risk .............................. 402
7.5.13 Design to Standards .................................. 410

7.6 Evaluating Embodiment Designs ......................... 416
7.7 Example of Embodiment Design ............................... 417

7.8 Detail Design ............................................... 436
8 Mechanical Connections, Mechatronics and Adaptronics ........................................... 439
  8.1 Mechanical Connections ........................................... 439
    8.1.1 Generic Functions and General Behaviour ...... 440
    8.1.2 Material Connections ..................................... 440
    8.1.3 Form Connections ........................................... 441
    8.1.4 Force Connections .......................................... 443
    8.1.5 Applications ................................................. 447
  8.2 Mechatronics ....................................................... 448
    8.2.1 General Architecture and Terminology ............ 448
    8.2.2 Goals and Limitations .................................... 450
    8.2.3 Development of Mechatronic Solutions .............. 450
    8.2.4 Examples .................................................... 451
  8.3 Adaptronics .......................................................... 458
    8.3.1 Fundamentals and Terminology ......................... 458
    8.3.2 Goals and Limitations .................................... 459
    8.3.3 Development of Adaptronic Solutions ................. 460
    8.3.4 Examples .................................................... 461

9 Size Ranges and Modular Products ........................................... 465
  9.1 Size Ranges .......................................................... 465
    9.1.1 Similarity Laws ............................................. 466
    9.1.2 Decimal-Geometric Preferred Number Series ...... 469
    9.1.3 Representation and Selection of Step Sizes ...... 472
    9.1.4 Geometrically Similar Size Ranges .................. 476
    9.1.5 Semi-Similar Size Ranges ................................. 481
    9.1.6 Development of Size Ranges ............................... 493
  9.2 Modular Products .................................................. 495
    9.2.1 Modular Product Systematics ............................. 496
    9.2.2 Modular Product Development ............................ 499
    9.2.3 Advantages and Limitations of Modular Systems 508
    9.2.4 Examples .................................................... 510
  9.3 Recent Rationalisation Approaches ......................... 514
    9.3.1 Modularisation and Product Architecture ............ 514
    9.3.2 Platform Construction ..................................... 515

10 Design for Quality ................................................... 517
  10.1 Applying a Systematic Approach ............................ 517
  10.2 Faults and Disturbing Factors ............................... 521
  10.3 Fault-Tree Analysis ............................................... 522
  10.4 Failure Mode and Effect Analysis (FMEA) ............... 529
  10.5 Quality Function Deployment (QFD) ......................... 531
11 Design for Minimum Cost ............................................. 535
11.1 Cost Factors ......................................................... 535
11.2 Fundamentals of Cost Calculations .............................. 537
11.3 Methods for Estimating Costs ................................... 539
  11.3.1 Comparing with Relative Costs ......................... 539
  11.3.2 Estimating Using Share of Material Costs ............... 544
  11.3.3 Estimating Using Regression Analysis .................... 545
  11.3.4 Extrapolating Using Similarity Relations ............... 547
  11.3.5 Cost Structures .............................................. 558
11.4 Target Costing ..................................................... 560
11.5 Rules for Minimising Costs ..................................... 561

12 Summary .................................................................. 563
  12.1 The Systematic Approach ..................................... 563
  12.2 Experiences of Applying the Systematic Approach in Practice ........... 567

References .................................................................. 571

English Bibliography .................................................. 603

Index ....................................................................... 609
Engineering Design
A Systematic Approach
Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H.
2007, XXI, 617 p., Hardcover