Preface

The RNA field is currently undergoing a revolution. In the past years, several unexpected functions have been uncovered for RNA molecules including phosphodiester backbone cleavage and gene expression regulation, both in a cis- and trans-acting fashion. Upon those discoveries, the idea that RNA could be used as a molecular tool was rapidly considered. For instance, considerable efforts have been put to use RNA molecules either as drugs or as drug targets. Today, therapeutic applications employing RNA molecules include the use of ribozymes as silencing tools, while riboswitches are involved in the development of novel antimicrobial agents. This volume presents essential protocols for the development of RNA-based therapeutic strategies using ribozymes and riboswitches as a way to treat various diseases.

Ribozymes are autocatalytic RNAs mainly found in viroids and viral genomes. Small ribozymes such as the one found in the hepatitis delta virus are important for the replication of the host. The main characteristic of ribozymes which is to specifically recognize and cleave RNA molecules was rapidly applied to target undesirable messenger RNAs. Thus, over the years, various ribozyme candidates have been engineered, optimized, and characterized to cleave target mRNAs with high specificity and efficiency. The degradation of targeted mRNAs and the associated shutdown expression are the direct consequences of the ribozyme cleavage activity.

Several chapters of this book describe recent and promising techniques designed to identify accessible regions in RNA molecules. This step is the premise for the development of good ribozyme candidates. Technical approaches such as SHAPE and nuclease probing, analyzed jointly with bioinformatic tools, are still relevant methods. However, the challenge is now to apply those methods simultaneously on a genomic scale and to determine the accessibility of each nucleotide directly in vivo. Moreover, the catalytic activity of ribozyme candidates has to be evaluated both in vitro and in vivo. This is important because it is known that ribozymes possessing a great in vitro cleavage activity do not necessarily show the best activities in vivo. Upon the design and evaluation of ribozyme candidates, the choice of the expression system and the cellular model will greatly depend on the target RNA.

In order to offer a general idea of protocols used, specific strategies associated to various biological targets will be presented. For example, researchers have now been able to construct ribozymes against mRNAs important for prions, viruses, and cancer progression. Also, recent experiments have shown the efficiency of delivery systems, which are nevertheless still limited by the inherent cellular instability of RNA. Relevant modifications to increase the half-life of ribozymes in specific conditions are also important issues that researchers will have to improve in the next few years.

Riboswitches are genetic regulatory elements mostly retrieved in the 5′ untranslated regions of bacteria. The capacity of riboswitches to specifically recognize small metabolites and their derivatives makes them an attractive target to develop novel antimicrobial agents.
Antibiotics against riboswitches are promising for therapeutic use since none of those RNA switches have been identified so far in humans. The first step in the antibiotic development consists in the identification of riboswitches controlling essentials genes. It is also important to characterize the regulation mechanism used by each targeted riboswitch. Bioinformatic analysis used in combination with biochemical and activity assays is the principal method needed to validate a riboswitch candidate. Upon riboswitch confirmation, the determination of the most promising therapeutic molecule can then be performed. Various methods to characterize affinity properties and intrinsic riboswitch characteristics were developed in the last few years. Efficient small molecules targeting resistant bacterial riboswitches constitute a new class of antibiotic, which is exciting considering that only one new antibiotic class has been found since 1985. New challenges, including rapid, efficient, and high-throughput methods to easily identify riboswitches and screen a diversity of ligands, have now emerged from those recent discoveries.

This book offers a complete overview of protocols used in the development of RNA molecule as drugs and drug target. All chapters describe a recent and precise RNA molecule approaches or studies in the development of an RNA therapeutic tool. We are convinced that these methods will help researchers from various domains of life sciences, including clinicians, biochemists, and virologists.

We want to thank all authors who participated in the production of this book. Their contributions will hopefully inspire many researches in the development of new therapeutic applications implicating RNA molecules or directly targeting harmful RNA.

*Sherbrooke, QC, Canada*

*Daniel Lafontaine*

*Audrey Dubé*
Therapeutic Applications of Ribozymes and Riboswitches
Methods and Protocols
Lafontaine, D.A.; Dubé, A. (Eds.)
2014, XI, 278 p. 53 illus., 19 illus. in color., Hardcover
ISBN: 978-1-62703-729-7
A product of Humana Press