Chapter 2

Hermite’s Theorem

We will begin with the proof that e is transcendental, a result first proved by Charles Hermite in 1873.

Theorem 2.1 e is transcendental.

Proof. We make the observation that for a polynomial f and a complex number t,

$$\int_0^t e^{-u} f(u) du = [-e^{-u} f(u)]_0^t + \int_0^t e^{-u} f'(u) du$$

which is easily seen on integrating by parts. Here the integral is taken over the line joining 0 and t. If we let

$$I(t, f) := \int_0^t e^{t-u} f(u) du,$$

then we see that

$$I(t, f) = e^t f(0) - f(t) + I(t, f').$$

If f is a polynomial of degree m, then iterating this relation gives

$$I(t, f) = e^t \sum_{j=0}^m f^{(j)}(0) - \sum_{j=0}^m f^{(j)}(t). \quad (2.1)$$

If F is the polynomial obtained from f by replacing each coefficient of f by its absolute value, then it is easy to see from the definition of $I(t, f)$ that

$$|I(t, f)| \leq |t| e^{|t|} F(|t|). \quad (2.2)$$
With these observations, we are now ready to prove the theorem. Suppose \(e \) is algebraic of degree \(n \). Then
\[
a_n e^n + a_{n-1} e^{n-1} + \cdots + a_1 e + a_0 = 0
\] (2.3)
for some integers \(a_i \) and \(a_0 a_n \neq 0 \). We will consider the combination
\[
J := \sum_{k=0}^{n} a_k I(k, f)
\]
with
\[
f(x) = x^{p-1} (x-1)^p \cdots (x-n)^p
\]
where \(p > |a_0| \) is a large prime. Using (2.3), we see that
\[
J = - \sum_{j=0}^{m} \sum_{k=0}^{n} a_k f^{(j)}(k)
\]
where \(m = (n+1)p - 1 \). Since \(f \) has a zero of order \(p \) at \(1, 2, \ldots, n \) and a zero of order \(p-1 \) at 0, we have that the summation actually starts from \(j = p - 1 \). For \(j = p - 1 \), the contribution from \(f \) is
\[
f^{(p-1)}(0) = (p-1)! (1)^{n} n!^p.
\]
Thus if \(n < p \), then \(f^{(p-1)}(0) \) is divisible by \((p-1)! \) but not by \(p \). If \(j \geq p \), we see that \(f^{(j)}(0) \) and \(f^{(j)}(k) \) are divisible by \(p! \) for \(1 \leq k \leq n \). Hence \(J \) is a non-zero integer divisible by \((p-1)! \) and consequently
\[
(p-1)! \leq |J|.
\]
On the other hand, our estimate (2.2) shows that
\[
|J| \leq \sum_{k=0}^{n} |a_k| e^k F(k) k \leq A n e^n (2n)!^p
\]
where \(A \) is the maximum of the absolute values of the \(a_k \)'s. The elementary observation
\[
e^p \geq \frac{p^{p-1}}{(p-1)!}
\]
gives
\[
p^{p-1} e^{-p} \leq (p-1)! \leq |J| \leq A n e^n (2n)!^p.
\]
For \(p \) sufficiently large, this is a contradiction. \(\square \)
Exercises

1. Show that for any polynomial \(f \), we have
\[
\int_0^\pi f(x) \sin x \, dx = f(\pi) + f(0) - \int_0^\pi f''(x) \sin x \, dx.
\]

2. Utilise the identity in the previous exercise to show \(\pi \) is irrational as follows. Suppose \(\pi = a/b \) with \(a, b \) coprime integers. Let
\[
f(x) = \frac{x^n(a - bx)^n}{n!}.
\]
Prove that
\[
\int_0^\pi f(x) \sin x \, dx
\]
is a non-zero integer and derive a contradiction from this.

3. Use Euler’s identity
\[
\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}
\]
to prove that there are infinitely many primes.

4. Use the series \(\sum_{n=0}^{\infty} 1/n! \) to show that \(e \) is irrational.

5. Show that \(e \) is not algebraic of degree 2 by considering the relation
\[
Ae + Be^{-1} + C = 0, \quad A, B, C \in \mathbb{Z},
\]
and using the infinite series for \(e \) and \(e^{-1} \) and arguing as in the previous exercise.

6. Prove that \(e^{\sqrt{2}} \) is irrational (Hint: Consider the series expansion for \(\alpha = e^{\sqrt{2}} + e^{-\sqrt{2}} \)).
Transcendental Numbers
Murty, M.R.; Rath, P.
2014, XIV, 217 p., Softcover