Contents

1 **Metric and Topological Tools** .. 1
 1.1 Convergences and Topologies .. 2
 1.1.1 Sets and Orders .. 2
 1.1.2 A Short Refresher About Topologies and Convergences 3
 1.1.3 Weak Topologies .. 8
 1.1.4 Semicontinuity of Functions and Existence Results 15
 1.1.5 Baire Spaces and the Uniform Boundedness Theorem 22
 1.2 Set-Valued Mappings ... 24
 1.2.1 Generalities About Sets and Correspondences 25
 1.2.2 Continuity Properties of Multimaps 29
 1.3 Limits of Sets and Functions .. 34
 1.3.1 Convergence of Sets .. 34
 1.3.2 Supplement: Variational Convergences 38
 1.4 Convexity and Separation Properties 40
 1.4.1 Convex Sets and Convex Functions 40
 1.4.2 Separation and Extension Theorems 51
 1.5 Variational Principles ... 60
 1.5.1 The Ekeland Variational Principle 61
 1.5.2 Supplement: Some Consequences of the Ekeland Principle 65
 1.5.3 Supplement: Fixed-Point Theorems via Variational Principles .. 66
 1.5.4 Supplement: Metric Convexity 68
 1.5.5 Supplement: Geometric Principles 70
 1.5.6 Supplement: The Banach–Schauder Open Mapping Theorem 72
 1.6 Decrease Principle, Error Bounds, and Metric Estimates 75
 1.6.1 Decrease Principle and Error Bounds 76
 1.6.2 Supplement: A Palais–Smale Condition 83
 1.6.3 Penalization Methods ... 84
 1.6.4 Robust and Stabilized Infima 87
 1.6.5 Links Between Penalization and Robust Infima 92
Contents

1.6.6 Metric Regularity, Lipschitz Behavior, and Openness 95
1.6.7 Characterizations of the Pseudo-Lipschitz Property 99
1.6.8 Supplement: Convex-Valued Pseudo-Lipschitzian Multimaps .. 100
1.6.9 Calmness and Metric Regularity Criteria 101
1.7 Well-Posedness and Variational Principles 104
1.7.1 Supplement: Stegall’s Principle 110
1.8 Notes and Remarks ... 112

2 Elements of Differential Calculus .. 117
2.1 Derivatives of One-Variable Functions 118
2.1.1 Differentiation of One-Variable Functions 118
2.1.2 The Mean Value Theorem 120
2.2 Primitives and Integrals ... 122
2.3 Directional Differential Calculus 126
2.4 Fréchet Differential Calculus ... 133
2.5 Inversion of Differentiable Maps 144
2.5.1 Newton’s Method ... 145
2.5.2 The Inverse Mapping Theorem 148
2.5.3 The Implicit Function Theorem 154
2.5.4 The Legendre Transform 158
2.5.5 Geometric Applications .. 159
2.5.6 The Method of Characteristics 166
2.6 Applications to Optimization ... 169
2.6.1 Normal Cones, Tangent Cones, and Constraints 170
2.6.2 Calculus of Tangent and Normal Cones 175
2.6.3 Lagrange Multiplier Rule 177
2.7 Introduction to the Calculus of Variations 180
2.8 Notes and Remarks ... 186

3 Elements of Convex Analysis ... 187
3.1 Continuity Properties of Convex Functions 188
3.1.1 Supplement: Another Proof of the Robinson–Ursescu Theorem ... 192
3.2 Differentiability Properties of Convex Functions 194
3.2.1 Derivatives and Subdifferentials of Convex Functions 194
3.2.2 Differentiability of Convex Functions 201
3.3 Calculus Rules for Subdifferentials 204
3.3.1 Supplement: Subdifferentials of Marginal Convex Functions ... 208
3.4 The Legendre–Fenchel Transform and Its Uses 212
3.4.1 The Legendre–Fenchel Transform 213
3.4.2 The Interplay Between a Function and Its Conjugate 216
3.4.3 A Short Account of Convex Duality Theory 219
3.4.4 Duality and Subdifferentiability Results 224
3.5 General Convex Calculus Rules
3.5.1 Fuzzy Calculus Rules in Convex Analysis
3.5.2 Exact Rules in Convex Analysis
3.5.3 Mean Value Theorems
3.5.4 Application to Optimality Conditions
3.6 Smoothness of Norms
3.7 Favorable Classes of Spaces
3.8 Notes and Remarks

4 Elementary and Viscosity Subdifferentials
4.1 Elementary Subderivatives and Subdifferentials
4.1.1 Definitions and Characterizations
4.1.2 Some Elementary Properties
4.1.3 Relationships with Geometrical Notions
4.1.4Coderivatives
4.1.5 Supplement: Incident and Proximal Notions
4.1.6 Supplement: Bornological Subdifferentials
4.2 Elementary Calculus Rules
4.2.1 Elementary Sum Rules
4.2.2 Elementary Composition Rules
4.2.3 Rules Involving Order
4.2.4 Elementary Rules for Marginal and Performance Functions
4.3 Viscosity Subdifferentials
4.4 Approximate Calculus Rules
4.4.1 Approximate Minimization Rules
4.4.2 Approximate Calculus in Smooth Banach Spaces
4.4.3 Metric Estimates and Calculus Rules
4.4.4 Supplement: Weak Fuzzy Rules
4.4.5 Mean Value Theorems and Superdifferentials
4.5 Soft Functions
4.6 Calculus Rules in Asplund Spaces
4.6.1 A Characterization of Fréchet Subdifferentiability
4.6.2 Separable Reduction
4.6.3 Application to Fuzzy Calculus
4.7 Applications
4.7.1 Subdifferentials of Value Functions
4.7.2 Application to Regularization
4.7.3 Mathematical Programming Problems and Sensitivity
4.7.4 Openness and Metric Regularity Criteria
4.7.5 Stability of Dynamical Systems and Lyapunov Functions
4.8 Notes and Remarks

5 Circa-Subdifferentials, Clarke Subdifferentials
5.1 The Locally Lipschitzian Case
5.1.1 Definitions and First Properties
5.1.2 Calculus Rules in the Locally Lipschitzian Case 361
5.1.3 The Clarke Jacobian and the Clarke Subdifferential in Finite Dimensions ... 365
5.2 Circa-Normal and Circa-Tangent Cones 369
5.3 Subdifferentials of Arbitrary Functions 375
 5.3.1 Definitions and First Properties 375
 5.3.2 Regularity ... 382
 5.3.3 Calculus Rules .. 383
5.4 Limits of Tangent and Normal Cones 390
5.5 Moderate Subdifferentials ... 394
 5.5.1 Moderate Tangent Cones 394
 5.5.2 Moderate Subdifferentials 398
 5.5.3 Calculus Rules for Moderate Subdifferentials 401
5.6 Notes and Remarks ... 404
6 Limiting Subdifferentials ... 407
 6.1 Limiting Constructions with Firm Subdifferentials 408
 6.1.1 Limiting Subdifferentials and Limiting Normals 408
 6.1.2 Limiting Coderivatives 413
 6.1.3 Some Elementary Properties 416
 6.1.4 Calculus Rules Under Lipschitz Assumptions 419
 6.2 Some Compactness Properties ... 420
 6.3 Calculus Rules for Coderivatives and Normal Cones 426
 6.3.1 Normal Cone to an Intersection 427
 6.3.2 Coderivative to an Intersection of Multimaps 430
 6.3.3 Normal Cone to a Direct Image 435
 6.3.4 Normal Cone to an Inverse Image 437
 6.3.5 Coderivatives of Compositions 439
 6.3.6 Coderivatives of Sums .. 444
 6.4 General Subdifferential Calculus 447
 6.5 Error Bounds and Metric Estimates 449
 6.5.1 Upper Limiting Subdifferentials and Conditioning 449
 6.5.2 Application to Regularity and Openness 453
 6.6 Limiting Directional Subdifferentials 454
 6.6.1 Some Elementary Properties 457
 6.6.2 Calculus Rules Under Lipschitz Assumptions 459
 6.7 Notes and Remarks ... 460
7 Graded Subdifferentials, Ioffe Subdifferentials 463
 7.1 The Lipschitzian Case ... 463
 7.1.1 Some Uses of Separable Subspaces 464
 7.1.2 The Graded Subdifferential and the Graded Normal Cone 465
Calculus Without Derivatives
Penot, J.-P.
2013, XX, 524 p., Hardcover
ISBN: 978-1-4614-4537-1