Contents

1 **Introduction** .. 1
 1.1 Motivation and Objectives 1
 1.2 Traditional SRAM Design and Technology Scaling 3
 1.3 Structure of the Text 5
 References .. 7

2 **SRAM Bit Cell Optimization** 9
 2.1 Introduction .. 9
 2.2 Different Cell Topologies 12
 2.2.1 Read SNM Free (RSNF) 7T Cell 13
 2.2.2 Differential Data Aware Power-Supplied (D²AP)
 8T SRAM Cell: Improved Write Margin
 and Half-Select Accesses 13
 2.2.3 Half Select Condition Free Cross Point 8T (CR8T)
 SRAM Cell ... 14
 2.2.4 Read Decoupled 8T and 10T Cell (Isolation of the
 Internal Storage Nodes from the Read Bit-Lines) 16
 2.2.5 Differential Read Decoupled 8T and
 10T SRAM Cells 24
 2.3 Summary ... 27
 References .. 30

3 **Adaptive Voltage Optimization Techniques: Low Voltage
 SRAM Operation** ... 31
 3.1 Introduction .. 31
 3.2 WRITE Assist Techniques 33
 3.3 READ Assist Techniques 39
 3.4 Comparative Analysis 43
3.5 Hybrid Voltage Optimization Techniques

3.5.1 Crosshairs SRAM—Separately Tuning VDD and GND Supplies of SRAM Cells

3.5.2 Configurable Write Assist: Compatibility with a Dynamic Voltage Scaling

3.5.3 MNBL Technique: Sequential Voltage Optimization

3.5.4 Compounded Differential VSS (CDVSS) Bias Technique

3.6 Summary

References

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>67</td>
</tr>
<tr>
<td>4.2 Hierarchical Divided Bit-Lines</td>
<td>68</td>
</tr>
<tr>
<td>4.3 Hierarchical Divided Bit-Lines with Local Assist Circuitry</td>
<td>70</td>
</tr>
<tr>
<td>4.3.1 Fine Grained Bit-Line Architecture</td>
<td>71</td>
</tr>
<tr>
<td>4.3.2 Divided Read Bit-Line and Read End Detecting Replica Circuit</td>
<td>72</td>
</tr>
<tr>
<td>4.3.3 Short Buffered Local Bit-Lines with Low Swing GBLs</td>
<td>73</td>
</tr>
<tr>
<td>4.4 WRITE After READ Based Assist Circuitry for Enabling VDDmin Operation</td>
<td>74</td>
</tr>
<tr>
<td>4.4.1 WRITE After READ Based Assist Circuitry</td>
<td>74</td>
</tr>
<tr>
<td>4.4.2 Short Buffered Bit-line</td>
<td>74</td>
</tr>
<tr>
<td>4.4.3 Low-Energy Disturb Mitigation (Half Select Issues) Scheme</td>
<td>75</td>
</tr>
<tr>
<td>4.5 Low Swing Bit-Line Hierarchy: Enhanced SRAM Cell Stability</td>
<td>75</td>
</tr>
<tr>
<td>4.5.1 Pseudo 8T Sensing Enabled Local Assist Circuitry</td>
<td>76</td>
</tr>
<tr>
<td>4.5.2 Hierarchical Buffered Segmented Bit-Lines</td>
<td>77</td>
</tr>
<tr>
<td>4.6 High Bit Density Based Bit-Line Hierarchy</td>
<td>79</td>
</tr>
<tr>
<td>4.6.1 Cascaded Bit-Line with Self-Write-Back Sense Amplifier</td>
<td>79</td>
</tr>
<tr>
<td>4.6.2 SRAM Cell Type Local Assist Circuitry</td>
<td>81</td>
</tr>
<tr>
<td>4.7 Comparative Analysis</td>
<td>83</td>
</tr>
<tr>
<td>4.7.1 Performance</td>
<td>83</td>
</tr>
<tr>
<td>4.7.2 Stability Analysis</td>
<td>86</td>
</tr>
<tr>
<td>4.7.3 Energy Consumption</td>
<td>88</td>
</tr>
<tr>
<td>4.7.4 Area Overhead</td>
<td>90</td>
</tr>
<tr>
<td>4.8 Conclusion</td>
<td>93</td>
</tr>
<tr>
<td>References</td>
<td>93</td>
</tr>
</tbody>
</table>
5 SRAM Energy Reduction Techniques

5.1 SRAM Array Leakage Reduction
5.1.1 Leakage Compensation-Based Techniques
5.1.2 Leakage CutOff Based Techniques

5.2 Dynamic WRITE Energy Reduction
5.2.1 Write Replica Circuit for Low Power Operation
5.2.2 Charge Recycling SRAM
5.2.3 Sense Amplifying SRAM Cell (SAC-SRAM)
5.2.4 Low Swing WRITE Operation
5.2.5 Low Swing WRITE with WRITE Masking
5.2.6 Low Swing Static WRITE Operation
5.2.7 Litho Optimized Low Swing Static WRITE

5.3 Low Energy READ Operation
5.3.1 Hierarchical Buffered Bit-lines
5.3.2 Pseudo 8T Architecture Based Local Architecture
5.3.3 RSDVt 8T SRAM: Variability Resilient Low Energy Solution

5.4 Comparative Analysis
5.5 Summary

References

6 Variation Tolerant Low Power Sense Amplifiers

6.1 Introduction: Energy-Offset Trade off Problem in Sense Amplifier Circuits

6.2 Calibration Based Techniques
6.2.1 Sense Amplifier Redundancy
6.2.2 Sense Amplifier Tuning
6.2.3 Capacitive Resist Implementation and Parallel Device Assist Implementation
6.2.4 Hot Carrier Injection Trimming
6.2.5 Multi-Sized SA Redundancy

6.3 Charge Limited Sequential Sense Amplifier: Calibration Free Solution
6.3.1 Limitations with the Calibration Based SA Design
6.3.2 Charge Limited Sequential Sensing: Concept
6.3.3 Circuit Implementation
6.3.4 Operation

6.4 Comparison
6.5 Conclusion

References

7 Prototypes

7.1 Introduction
7.2 IM_90 (First Prototype 90 nm IP)
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1 Target Application</td>
<td>143</td>
</tr>
<tr>
<td>7.2.2 Design Innovation Contributions</td>
<td>144</td>
</tr>
<tr>
<td>7.2.3 Design Description</td>
<td>144</td>
</tr>
<tr>
<td>7.2.4 Measurement Results</td>
<td>150</td>
</tr>
<tr>
<td>7.3 IM_65 (Second Prototype 65 nm LP)</td>
<td>151</td>
</tr>
<tr>
<td>7.3.1 Target Application</td>
<td>151</td>
</tr>
<tr>
<td>7.3.2 Design Innovation Contributions</td>
<td>152</td>
</tr>
<tr>
<td>7.3.3 Design Description</td>
<td>153</td>
</tr>
<tr>
<td>7.3.4 Measurement Results</td>
<td>155</td>
</tr>
<tr>
<td>7.4 Comparison with the State-of-the-Art</td>
<td>158</td>
</tr>
<tr>
<td>References</td>
<td>161</td>
</tr>
<tr>
<td>8 Conclusions</td>
<td>163</td>
</tr>
<tr>
<td>8.1 Synopsys of Contribution</td>
<td>163</td>
</tr>
<tr>
<td>8.2 Technology Scaling Perspective</td>
<td>166</td>
</tr>
<tr>
<td>8.3 Conclusion</td>
<td>167</td>
</tr>
<tr>
<td>8.4 Future Directions</td>
<td>168</td>
</tr>
<tr>
<td>References</td>
<td>170</td>
</tr>
</tbody>
</table>