Contents

1 Introduction .. 1
1.1 Motivation .. 1
1.2 Book Research Objectives ... 4
1.3 Outline of the Book .. 5

2 Modulation Schemes Effect on RF Power Amplifier Nonlinearity and RFPA Linearization Techniques 7
2.1 Introduction ... 7
2.2 RF Modulation Scheme in Bandpass Radio Communication Channel .. 7
2.2.1 Ideal Radio Transmitter ... 9
2.2.2 RF Power Amplifier Linearity for Non-Modulated Signal ... 9
2.2.3 RF Power Amplifier Linearity for Modulated Signals . 14
2.2.4 RF Power Amplifier Spectral Regrowth: Out-of-band Distortion .. 16
2.2.5 Error Vector Magnitude Signal Modulation Quality: In-band Distortion .. 19
2.3 Role of RF Power Amplifier Linearization Techniques 20
2.3.1 RF Power Amplifier Power Back-off 21
2.3.2 RF Power Amplifier Feedforward Linearization 22
2.3.3 RF Power Amplifier Cartesian Indirect Feedback Linearization .. 23
2.3.4 RF Power Amplifier Polar Feedback Linearization 24
2.3.5 RF Power Amplifier RF Predistortion Linearization 24
2.4 Radio-over-Fiber for Wireless Communication 26
2.5 Summary .. 28

3 Distributed Amplification Principles and Transconductor Nonlinearity Compensation .. 29
3.1 Introduction ... 29
3.2 Distributed Amplification Principles .. 29
 3.2.1 Additive Distributed Versus Product Cascaded Amplification 29
 3.2.2 Lumped Constant Delay Line Characteristics .. 33
 3.2.3 Lossless Distributed Amplification .. 36
 3.2.4 Lossy Distributed Amplification .. 38
3.3 Transconductor Gain Cells for Fully-Differential Distributed Amplifiers 42
3.4 Chapter Summary ... 46

4 Distributed RF Linearization Circuit Applications .. 47
 4.1 Introduction .. 47
 4.2 Linearized CMOS Distributed Active Power Splitter 47
 4.2.1 Amplitude and Phase Imbalance of Linearized CMOS Distributed Active Power Splitter 50
 4.2.2 CMOS Distributed Active Power Splitter Using Multiple-Gated Transistor Linearization 51
 4.3 Linearized CMOS Distributed Matrix Amplifier Architecture 55
 4.3.1 CMOS Distributed 2 x 3 Matrix Amplifier with Interleaved Distributed Loading Technique 56
 4.3.2 Proposed CMOS Interleaved Distributed 2 x 3 Matrix Amplifier with Post Distortion and Gate Optimum Bias Linearization Technique 57
 4.4 Linearized CMOS Distributed Paraphase Amplifier 63
 4.4.1 Amplitude and Phase Imbalance of Linearized CMOS Distributed Paraphase Amplifier 66
 4.4.2 CMOS Distributed Paraphase Amplifier Employing Derivative Superposition Linearization 68
 4.5 Chapter Summary ... 70

5 Linearized CMOS Distributed Bidirectional Amplifier with Cross-Coupled Compensator .. 71
 5.1 Introduction .. 71
 5.2 Linearized CMOS Distributed Bidirectional Amplifier Circuit Design Analysis 71
 5.3 CMOS Cross-Coupled Compensator Transconductor as DA Gain Cell for Linearity Improvement and Enhanced Tunability 75
 5.4 Effect of Nonlinear Drain Capacitance on DA Linearization Bandwidth 80
 5.5 Transmission-Lines Multi-level Inductor Modeling in Transmission-Lines for Silicon Chip Area Reduction 86
 5.6 DA Based Duplexer with Integrated Antenna on Silicon Replacing DA M-Derived Matching Network 90
 5.6.1 Varactor-Tuned LC Networks .. 92
 5.7 Chapter Summary ... 92
6 Linearized CMOS Distributed Bidirectional Amplifier
 Silicon Chip Implementation .. 95
 6.1 Introduction .. 95
 6.2 Linearized CMOS Bidirectional Distributed Amplifier
 High Frequency Layout Considerations 95
 6.3 CMOS RF Multi-level Inductors Implementation 96
 6.4 CMOS Bidirectional Distributed Amplifier
 Cross-Coupled Compensator Gain Cell Layout 98
 6.5 Linearized CMOS Bidirectional Distributed Amplifier
 Full Layout .. 99
 6.6 Chapter Summary .. 102

7 Linearized CMOS Distributed Bidirectional Amplifier
 Experimental Setups and Chip Measurement Results 103
 7.1 Introduction .. 103
 7.2 High-Frequency On-Wafer Measurement System 103
 7.3 S-Parameter and Harmonics Power Measurements 105
 7.4 Noise Figure Setup and Measurement 112
 7.5 Summary ... 115

8 Conclusion ... 117
 8.1 Summary ... 117
 8.2 Book Research List of Contributions 118
 8.3 Research Future Work .. 119

A Quadrature Signal Processing 121
 A.1 Analog Modulation Transmission 121
 A.2 Why Digital Modulation Transmission? 121
 A.2.1 Time Domain Transmitted Signal Mapping
 into Phase Plane ... 125
 A.2.2 IQ Data Modulation Technique in Quadrature
 Processing Systems .. 125

References ... 129
Distributed CMOS Bidirectional Amplifiers
Broadbanding and Linearization Techniques
El-Khatib, Z.; MacEachern, L.; Mahmoud, S.A.
2012, XXVI, 134 p., Hardcover