Contents

1 Introduction ... 1
 1.1 Motivation ... 1
 1.2 State of the Art ... 2
 1.2.1 Stochastic Volatility Market Models 2
 1.2.2 Asymptotic Methods 6
 1.3 Objectives .. 12
 1.4 Asymptotic Chaos Expansion 13
 1.5 Outline and Main Results 14
 1.6 General Spirit and Edited Material 16
 References ... 17

Part I Single Underlying

2 Volatility Dynamics for a Single Underlying: Foundations 23
 2.1 Framework and Objectives 24
 2.1.1 Market and Underlyings 24
 2.1.2 Vanilla Options Market and Sliding Implied Volatility 25
 2.1.3 The Two Stochastic Volatility Model Frameworks 34
 2.1.4 The Objectives .. 42
 2.2 Derivation of the Zero-Drift Conditions 42
 2.2.1 The Main Zero-Drift Condition 42
 2.2.2 The Immediate Zero Drift Conditions 47
 2.2.3 The IATM Identity 50
 2.2.4 Synthesis and Overture 52
 2.3 Recovering the Instantaneous Volatility: The First Layer 53
 2.3.1 Computing the Dynamics of σ_t 53
 2.3.2 Interpretation and Comments 57
2.4 Generating the Implied Volatility: The First Layer

- 2.4.1 Computing the Immediate ATM Differentials
- 2.4.2 Interpretation and Comments

2.5 Illustrations and Applications

- 2.5.1 An Overview of Possible Applications
- 2.5.2 Illustration: Qualitative Analysis of a Classical SV Model Class
- 2.5.3 Second Illustration: Smile-Specification of SInsV Models

2.6 Conclusion and Overture

References

3 Volatility Dynamics for a Single Underlying: Advanced Methods

3.1 Higher-Order Expansions: Methodology and Automation

- 3.1.1 Tools and Roadmap
- 3.1.2 Computing the First Column of the Differentiation Matrix
- 3.1.3 Computing Subsequent Columns of the Differentiation Matrix

3.2 Higher-Order Expansions: Illustration and Interpretation

- 3.2.1 Justification and Outline
- 3.2.2 Interpretation of the Results
- 3.2.3 Illustration of the Maturity Effect

3.3 Framework Extensions and Generalisation

- 3.3.1 Building Blocks and Available Extensions
- 3.3.2 An Important Example: The Normal Baseline via Its ZDC
- 3.3.3 The Generic Baseline Transfer

3.4 Multi-dimensional Extensions, or the Limitations of Recovery

- 3.4.1 Framework
- 3.4.2 Derivation of the Zero-Drift Conditions
- 3.4.3 Recovering the Instantaneous Volatility: The First Layer
- 3.4.4 Generating the Implied Volatility: The First Layer

3.5 Illustration of the Vectorial Framework: The Basket Case

- 3.5.1 Motivation
- 3.5.2 Framework and Objectives
- 3.5.3 The Coefficient Basket
- 3.5.4 The Asset Basket in the General Case
- 3.5.5 The Asset Basket Specialised to Fixed Weights
- 3.5.6 Interpretation and Applications

References
4 Practical Applications and Testing

4.1 General Considerations on Practical Applications

4.2 Application to the Generic SABR Class

4.2.1 Presentation of the Model

4.2.2 Coefficients of the Chaos Dynamics

4.2.3 Mapping the Model and the Smile

4.3 Application to the CEV-SABR Model

4.3.1 Presentation of the Model

4.3.2 Coefficients of the Chaos Dynamics

4.3.3 Mapping the Model and the Smile Shape

4.3.4 Compatibility with Hagan et al.

4.4 Application to the FL-SV Class (Exercise)

4.4.1 Presentation of the Model

4.4.2 Derivation Exercise

4.5 Numerical Implementation and Testing

4.5.1 Testing Environment and Rationale

4.5.2 Tests Data and Results

4.5.3 Conclusions

References

Part II Term Structures

5 Volatility Dynamics in a Term Structure

5.1 Framework and Objectives

5.1.1 Numeraires, Underlyings and Options

5.1.2 Absolute and Sliding Implied Volatilities

5.1.3 The Two Stochastic Volatility Models

5.1.4 The Objectives

5.2 Derivation of the Zero-Drift Conditions

5.2.1 The Main Zero-Drift Condition

5.2.2 The Immediate Zero Drift Condition

5.2.3 The IATM Identity

5.3 Recovering the Instantaneous Volatility

5.3.1 Establishing the Main Result

5.3.2 Interpretation and Comments

5.4 Generating the SIV Surface: The First Layer

5.4.1 Computing the Differentials

5.4.2 Interpretation and Comments

5.5 Extensions, Further Questions and Conclusion

References
6 Implied Dynamics in the SV-HJM Framework

6.1 Definitions, Notations and Objectives

6.1.1 The HJM Framework in a Chaos Context

6.1.2 Tenor Structures and Simplified Notations

6.1.3 Objectives and Assumptions

6.1.4 Relative Pertinence of the SV-HJM and SV-LMM Classes

6.2 Dynamics of Rebased Bonds

6.2.1 Dynamics of the Rebased Zero Coupons

6.2.2 Dynamics of a Fixed-Weights Rebased Zero Coupon Basket

6.3 Bond Options

6.3.1 Casting the Bond Options Into the Generic Framework

6.3.2 Dynamics of the Underlying Rebased Bond

6.3.3 Interpretation

6.4 Caplets

6.4.1 Casting the Caplets into the Generic Framework

6.4.2 Dynamics of the Underlying Libor Rate

6.4.3 Interpretation of the Libor Rate HJM Dynamics

6.5 Swaptions

6.5.1 Casting the Swaptions into the Generic Framework

6.5.2 Dynamics of the Underlying Swap Rate

6.6 Indirect Approaches: Assets vs Rates

6.6.1 Applying the Asymptotic Approach to Caplets

6.6.2 Applying the Asymptotic Approach to Swaptions

References

7 Implied Dynamics in the SV-LMM Framework

7.1 Definitions, Notations and Objectives

7.1.1 The LMM Framework in a Chaos Context

7.1.2 Tenor Structures and Simplified Notations

7.1.3 Objectives and Assumptions

7.2 Chaos Dynamics of the Zeros in an LMM Framework

7.2.1 State Variables and Rationale for Rebasing

7.2.2 Computing the Chaos Dynamics

7.3 Bond Options

7.3.1 Casting the Bond Options into the Generic Framework

7.3.2 Dynamics of the Underlying Rebased Bond

References
Contents

7.4 Caplets ... 384
 7.4.1 Casting the Caplets into the Generic Framework 385
 7.4.2 IATM Differentials of the Caplet Smile 386
7.5 Swaptions ... 388
 7.5.1 Casting the Swaptions into the Generic Framework ... 389
 7.5.2 Dynamics of the Underlying Par Swap Rate 391
7.6 Approximating the Swap Rate Volatility 400
 7.6.1 The Basket Approximation for Swap Rates 401
 7.6.2 Exact Swap Rate Dynamics in the Basket Representation ... 404
 7.6.3 Impact of the Freezing Approximation in the General Case 407
 7.6.4 Impact of the Freezing Approximation in a Simplified Case 409
References ... 418

8 Conclusion .. 421
 8.1 Summary of Achievements 422
 8.2 Advantages of the Methodology 423
 8.3 Limitations of the Methodology 426
 8.4 Extensions and Further Work 427
References ... 427

Appendix A: Itô-Kunita Formula 429

Appendix B: Transition Formulae 431

Appendix C: Black and Bachelier Differentials 433

Appendix D: Linear Algebra Toolbox 437

Appendix E: Computation of the 2nd and 3rd Layers 443

Solutions ... 481

Index ... 489
Asymptotic Chaos Expansions in Finance
Theory and Practice
Nicolay, D.
2014, XXII, 491 p. 34 illus., 26 illus. in color., Softcover