Contents

Part I Introduction, Basic Concepts and Preliminaries

1 **Introduction** .. 3
 1.1 Basic Concepts .. 3
 1.2 Motivation ... 5
 1.2.1 Data-Driven and Model-Based FDI 5
 1.2.2 Fault-Tolerant Control and Lifetime Management .. 5
 1.2.3 Information Infrastructure 6
 1.3 Outline of the Contents 7
 1.4 Notes and References 9

References .. 10

2 **Case Study and Application Examples** 11
 2.1 Three-Tank System 11
 2.1.1 Process Dynamics and Its Description 11
 2.1.2 Description of Typical Faults 13
 2.1.3 Closed-Loop Dynamics 14
 2.2 Continuous Stirred Tank Heater 15
 2.2.1 Plant Dynamics and Its Description 15
 2.2.2 Faults Under Consideration 17
 2.3 An Industrial Benchmark: Tennessee Eastman Process .. 17
 2.3.1 Process Description and Simulation 17
 2.3.2 Simulated Faults in TEP 20
 2.4 Notes and references 21

References .. 21

3 **Basic Statistical Fault Detection Problems** 23
 3.1 Some Elementary Concepts 23
 3.1.1 A Simple Detection Problem and Its Intuitive Solution 23
 3.1.2 Elementary Concepts in Fault Detection 24
 3.1.3 Problem Formulations 26
 3.2 Some Elementary Methods and Algorithms 26
 3.2.1 The Intuitive Solution 26
3.2.2 T^2 Test Statistic ... 27
3.2.3 Likelihood Ratio and Generalized
 Likelihood Ratio ... 28
3.2.4 Vector-Valued GLR ... 29

3.3 The Data-Driven Solutions of the Detection Problem 31
 3.3.1 Fault Detection with a Sufficiently Large N 32
 3.3.2 Fault Detection Using Hotelling’s T^2 Test Statistic ... 33
 3.3.3 Fault Detection Using Q Statistic 35

3.4 Case Example: Fault Detection in Three-Tank System 36
 3.4.1 System Setup and Simulation Parameters 36
 3.4.2 Training Results and Threshold Setting 37
 3.4.3 Fault Detection Results 39

3.5 Variations of the Essential Fault Detection Problem 44
 3.5.1 Variation I .. 44
 3.5.2 Variation II ... 45

3.6 Notes and References ... 46

References ... 47

4 Fault Detection in Processes with Deterministic Disturbances ... 49
 4.1 Problem Formulations and Some Elementary Concepts 49
 4.1.1 A Simple Detection Problem and Its Intuitive
 Solution .. 49
 4.1.2 Some Essential Concepts 50
 4.1.3 Problem Formulations 52
 4.2 Some Elementary Methods and Algorithms 53
 4.2.1 An Intuitive Strategy 53
 4.2.2 An Alternative Solution 54
 4.2.3 A Comparison Study 56
 4.2.4 Unknown Input Estimation Based
 Detection Scheme ... 57
 4.2.5 A General Solution 58
 4.3 A Data-Driven Solution of the Fault Detection Problem 60
 4.4 A Variation of the Essential Fault Detection Problem 62
 4.5 Case Study .. 64
 4.5.1 Case Study on Laboratory System CSTH 64
 4.5.2 Case Study on Three-Tank System 67
 4.6 Notes and References ... 68

References ... 70
Part II Application of Multivariate Analysis Methods to Fault Diagnosis in Static Processes

5 Application of Principal Component Analysis to Fault Diagnosis

5.1 The Basic Application Form of PCA to Fault Detection

5.1.1 Algorithms

5.1.2 Basic Ideas and Properties

5.2 The Modified Form of SPE: Hawkin’s T^2_H Statistic

5.3 Fault Sensitivity Analysis

5.3.1 Sensitivity to the Off-set Faults

5.3.2 Sensitivity to the Scaling Faults

5.4 Multiple Statistical Indices and Combined Indices

5.5 Dynamic PCA

5.6 Fault Identification

5.6.1 Identification of Off-set Faults

5.6.2 Identification of Scaling Faults

5.6.3 A Fault Identification Procedure

5.7 Application to TEP

5.7.1 Case Study on Fault Scenario 4

5.7.2 Case Study Results for the Other Fault Scenarios

5.7.3 Comparison of Multiple Indices with Combined Indices

5.8 Notes and References

References

6 Application of Partial Least Squares Regression to Fault Diagnosis

6.1 Partial Least Squares Algorithms

6.2 On the PLS Regression Algorithms

6.2.1 Basic Ideas and Properties

6.2.2 Application to Fault Detection and Process Monitoring

6.3 Relations Between LS and PLS

6.3.1 LS Estimation

6.3.2 LS Interpretation of the PLS Regression Algorithm

6.4 Remarks on PLS Based Fault Diagnosis

6.5 Case Study on TEP

6.5.1 Test Setup

6.5.2 Offline Training

6.5.3 Online Running

6.6 Notes and References

References
7 Canonical Variate Analysis Based Process Monitoring and Fault Diagnosis 117
7.1 Introduction to CCA ... 117
7.2 CVA-Based System Identification 119
7.3 Applications to Process Monitoring and Fault Detection 123
 7.3.1 Process Monitoring ... 123
 7.3.2 Fault Detection Schemes 124
7.4 Case Study: Application to TEP 126
 7.4.1 Test Setup and Training 126
 7.4.2 Test Results and a Comparison Study 127
7.5 Notes and References ... 128
References .. 131

Part III Data-driven Design of Fault Diagnosis Systems
for Dynamic Processes

8 Introduction, Preliminaries and I/O Data Set Models 135
 8.1 Introduction ... 135
 8.2 Preliminaries and Review of Model-Based FDI Schemes ... 136
 8.2.1 System Models .. 136
 8.2.2 Model-Based Residual Generation Schemes 140
 8.3 I/O Data Models ... 148
 8.4 Notes and References ... 150
References .. 151

9 Data-Driven Diagnosis Schemes 153
 9.1 Basic Concepts and Design Issues of Fault Diagnosis in Dynamic Processes 153
 9.2 Data-Driven Design Schemes of Residual Generators .. 154
 9.2.1 Scheme I ... 154
 9.2.2 Scheme II .. 155
 9.2.3 Scheme III ... 157
 9.2.4 A Numerically Reliable Realization Algorithm 159
 9.2.5 Comparison and Discussion 161
 9.3 Test Statistics, Threshold Settings and Fault Detection .. 162
 9.4 Fault Isolation and Identification Schemes 162
 9.4.1 Problem Formulation 163
 9.4.2 Fault Isolation Schemes 165
 9.4.3 Fault Identification Schemes 166
 9.5 Case Study: Fault Detection in Three-Tank System 167
 9.5.1 System and Test Setup 168
 9.5.2 Test Results .. 168
 9.5.3 Handling of Ill-Conditioning Σ_{res} 169
10 Data-Driven Design of Observer-Based Fault Diagnosis Systems

10.1 Motivation and Problem Formulation

10.2 Parity Vectors Based Construction of Observer-Based Residual Generators

10.2.1 Generation of a Scalar Residual Signal

10.2.2 Generation of m-Dimensional Residual Vectors

10.2.3 Data-Driven Design of Kalman Filter Based Residual Generators

10.3 Fault Detection, Isolation and Identification

10.3.1 On Fault Detection

10.3.2 Fault Isolation Schemes

10.3.3 A Fault Identification Scheme

10.4 Observer-Based Process Monitoring

10.5 Case Study on CSTH

10.5.1 System Setup

10.5.2 Towards the Kalman Filter-Based Residual Generator

10.5.3 Towards the Generation of m-Dimensional Residual Vectors

10.6 Case Study on TEP

10.7 Remarks on the Application of the Data-Driven FDI Systems

10.8 Notes and References

References
11.3.3 Stability and Exponential Convergence 211
11.3.4 An Extension to the Adaptive State Observer 214
11.4 Case Studies .. 215
 11.4.1 Application of Adaptive SVD Based RPCA Scheme to Three-Tank System 215
 11.4.2 Application of the Adaptive Observer-Based Residual Generation Scheme to the Three-Tank System ... 218
11.5 Notes and References .. 221
References .. 222

12 Iterative Optimization of Process Monitoring and Fault Detection Systems .. 223
 12.1 Iterative Generalized Least Squares Estimation 223
 12.2 Iterative RLS Estimation .. 225
 12.2.1 The Basic Idea and Approach 225
 12.2.2 Algorithm, its Realization and Implementation 227
 12.2.3 An Example .. 227
 12.3 Iterative Optimization of Kalman Filters 231
 12.3.1 The Idea and Scheme ... 231
 12.3.2 Algorithm and Implementation 235
 12.3.3 An Example .. 236
 12.4 Case Study ... 237
 12.4.1 Case 1: Σ_v is Unknown While Σ_w is Given 239
 12.4.2 Case 2: Σ_w is Unknown While Σ_v is Given 240
 12.5 Notes and References .. 241
References .. 243

Part V Data-driven Design and Lifetime Management of Fault-tolerant Control Systems

 13.1 Preliminaries ... 247
 13.1.1 Image Representation and State Feedback Control 248
 13.1.2 Parametrization of Stabilizing Controllers 249
 13.2 Fault-Tolerant Control Architecture and Relevant Issues 250
 13.2.1 An Observer-Based Fault-Tolerant Control Architecture ... 250
 13.2.2 Design and Optimal Settings 252
 13.2.3 A Residual-Based Fault-Tolerant and Lifetime Management Structure ... 255
 13.2.4 System Dynamics and Design Parameters 257
 13.3 Notes and References .. 261
References .. 262
14 Data-Driven Design of Observer-Based Control Systems 263
 14.1 Problem Formulation .. 263
 14.2 Data-Driven Realization Form of the Image Representation 264
 14.3 An Identification Scheme for the Image Representation 266
 14.3.1 A Brief Review of the I/O Data Set Model and Relevant Issues 266
 14.3.2 The Identification Scheme 266
 14.4 A Data-Driven Design Scheme of Observer-Based Control Systems . . 271
 14.4.1 Data-Driven Design of Feed-Forward Controller 271
 14.4.2 Observer-Based State Feedback Controller Design 272
 14.5 Concluding Remarks .. 274
 14.6 Experimental Study on Laboratory CSTH System 275
 14.6.1 System Setup and Process Measurements 275
 14.6.2 Towards the Observer-Based Controller Design 275
 14.6.3 Towards the Fault-Tolerant Control Scheme 276
 14.7 Notes and References .. 277
References .. 279

15 Realization of Lifetime Management of Automatic Control Systems 281
 15.1 Adaptive Update of H-PRIO Parameters 281
 15.1.1 Problem Formulation ... 282
 15.1.2 Basic Idea .. 283
 15.1.3 The Adaptive Scheme 284
 15.1.4 Realization of the Adaptive Scheme 286
 15.2 Iterative Update of L-PRIO Parameters 287
 15.2.1 Problem Formulation ... 287
 15.2.2 Iterative Solution Algorithm 289
 15.3 Implementation of the Lifetime Management Strategy 290
 15.3.1 A General Description 290
 15.3.2 Case Study on Three-Tank System 291
 15.4 Notes and References .. 296
References .. 297

Index .. 299
Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems
Ding, S.X.
2014, XX, 300 p. 106 illus., 101 illus. in color., Hardcover
ISBN: 978-1-4471-6409-8