Contents

1 Introduction .. 1
 1.1 Trends and Requirements of Advanced Multimedia Systems 2
 1.2 Trends and Options for Multimedia Processing 4
 1.3 Summary of Challenges and Issues .. 9
 1.4 Contribution of this Monograph ... 9
 1.5 Monograph Outline ... 13

2 Background and Related Work ... 15
 2.1 Video Coding: Basics and Terminology .. 15
 2.2 The H.264 Advanced Video Codec: A Low-power Perspective 17
 2.2.1 Overview of the H.264 Video Encoder and Its
 Functional Blocks .. 17
 2.2.2 Low-Power Architectures for H.264/AVC
 Video Encoder .. 22
 2.2.3 Adaptive and Low-Power Design of the Key
 Functional Blocks of the H.264 Video Encoder:
 State-of-the-Art and Their Limitations ... 24
 2.3 Reconfigurable Processors ... 28
 2.3.1 Fine-Grained Reconfigurable Fabric .. 29
 2.3.2 Leakage Power of Fine-grained Reconfigurable
 Fabric and the Power-Shutdown Infrastructure 30
 2.3.3 Custom Instructions (CIs): A Reconfigurable
 Processor Perspective ... 32
 2.3.4 Reconfigurable Instruction Set Processors 33
 2.3.5 Rotating Instruction Set Processing Platform (RISPP) 35
 2.4 Low-Power Approaches in Reconfigurable Processors 43
 2.5 Summary of Related Work ... 45
3 Adaptive Low-Power Architectures for Embedded Multimedia Systems ... 49
 3.1 Analyzing the Video Coding Application for Energy Consumption and Adaptivity .. 49
 3.1.1 Advanced Video Codecs: Analyzing the Tool Set 51
 3.1.2 Energy and Adaptivity Related Issues in H.264/AVC Video Encoder ... 53
 3.2 Energy- and Adaptivity Related Issues for Dynamically Reconfigurable Processors .. 56
 3.3 Overview of the Proposed Architectures and Design Steps 59
 3.4 Power Model for Dynamically Reconfigurable Processors 63
 3.4.1 Power Consuming Parts of a Computation- and Communication-Infrastructure in a Dynamically Reconfigurable Processor ... 63
 3.4.2 The Proposed Power Model .. 65
 3.5 Summary of Adaptive Low-Power Embedded Multimedia System .. 67

4 Adaptive Low-Power Video Coding ... 69
 4.1 H.264 Encoder Application Architectural Adaptations for Reconfigurable Processors .. 69
 4.1.1 Basic Application Architectural Adaptations 69
 4.1.2 Application Architectural Adaptations for On-Demand Interpolation ... 72
 4.1.3 Application Architectural Adaptations for Reducing the Hardware Pressure ... 75
 4.1.4 Data Flow of the H.264 Encoder Application Architecture with Reduced Hardware Pressure 77
 4.2 Designing Low-Power Data Paths and Custom Instructions 80
 4.2.1 Designing the Custom Instruction for In-Loop Deblocking Filter ... 81
 4.2.2 Designing the Custom Instructions for Motion Estimation .. 85
 4.2.3 Designing the Custom Instruction for Motion Compensation .. 86
 4.2.4 Area Results for the Custom Instructions of H.264 Encoder .. 87
 4.3 Spatial and Temporal Analysis of Videos Considering Human Visual System ... 87
 4.3.1 HVS-based Macroblock Categorization .. 92
 4.3.2 QP-based Thresholding .. 93
 4.3.3 Summary of Spatial and Temporal Analysis of Videos Considering Human Visual System 95
 4.4 An HVS-Based Adaptive Complexity Reduction Scheme 95
 4.4.1 Prognostic Early Mode Exclusion .. 97
4.4.2 Hierarchical Fast Mode Prediction .. 99
4.4.3 Sequential RDO Mode Elimination .. 100
4.4.4 Evaluation of the Complexity Reduction Scheme 100

4.5 Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme .. 104
4.5.1 Adaptive Motion Estimator with Multiple Processing Stages .. 105
4.5.2 enBudget: The Adaptive Predictive Energy-budgeting Scheme ... 111
4.5.3 Evaluation of Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme 117
4.5.4 Comparing Adaptive Motion Estimator with and Without the enBudget Scheme .. 118
4.5.5 Comparing UMHexagonS with and Without the enBudget Scheme .. 118

4.6 Summary of Low-power Application Architecture 121

5 Adaptive Low-power Reconfigurable Processor Architecture 123
5.1 Motivational Scenario and Problem Identification 123
5.1.1 Summary of the Motivational Scenario and Problem Identification .. 126
5.2 Run-time Adaptive Energy Management with the Novel Concept of Custom Instruction Set Muting 126
5.2.1 Concept of Muting the Custom Instructions 127
5.2.2 Power-shutdown Infrastructure for the Muted Custom Instructions .. 128
5.2.3 Run-time Adaptive Energy Management 130
5.2.4 Summary of the Run-time Adaptive Energy Management and CI Muting .. 132
5.3 Determining an Energy-minimizing Instruction Set 133
5.3.1 Formal Problem Modeling and Energy Benefit Function 133
5.3.2 Algorithm for Choosing CI Implementation Versions 135
5.3.3 Evaluation and Results for Energy-Minimizing Instruction Set ... 139
5.3.4 Summary of Energy Minimizing Instruction Set 145
5.4 Selective Instruction Set Muting .. 146
5.4.1 Problem Description and Motivational Scenarios 147
5.4.2 Operational Flow for Selective Instruction Set Muting 148
5.4.3 Analyzing the Energy Benefit Function of Muting 150
5.4.4 Hot Spot Requirement Prediction: Computing Weighting Factors for CIs .. 152
5.4.5 Evaluation of Selective Instruction Set Muting 153
5.3.6 Summary of Selective Instruction Set Muting 154
5.5 Summary of Adaptive Low-power Reconfigurable Processor Architecture .. 155
6 **Power Measurement of the Reconfigurable Processors** 157

6.1 Power Measurement Setup .. 157

6.2 Measuring the Power of Custom Instructions ... 158

 6.2.1 Flow for Creating the Power Model ... 158

 6.2.2 Test Cases for Power Measurements ... 160

 6.2.3 Results for Power Measurement and Estimation 162

6.3 Measuring the Power of the Reconfiguration Process 164

 6.3.1 Power Consumption of EEPROM .. 165

 6.3.2 Power Consumption of the Reconfiguration via ICAP 165

6.4 Summary of the Power Measurement of the Reconfigurable Processors .. 166

7 **Benchmarks and Results** ... 167

7.1 Simulation Conditions and Fairness of the Comparison 168

7.2 Adaptive Low-power Application Architecture 169

 7.2.1 Comparing Complexity Reduction Scheme to

 State-of-the-art and the Exhaustive RDO-MD 169

 7.2.2 Comparing the Energy-Aware Motion Estimation

 with Integrated Energy Budgeting Scheme to State-of-the-art 173

7.3 Adaptive Low-power Processor Architecture 175

 7.3.1 Comparing the Adaptive Energy Management

 Scheme (Without Selective Instruction Set Muting)

 to RISPP with Performance Maximization [BSH08c] 175

 7.3.2 Applying the Adaptive Energy Management

 Scheme (Without Selective Instruction Set Muting)

 to Molen [VWG+04] Reconfigurable Processor 176

 7.3.3 Comparing the Adaptive Energy Management

 Scheme (with Selective Instruction Set Muting) to

 State-of-the-art Hardware-oriented Shutdown 177

7.4 Summary of the Benchmarks and Comparisons 180

8 **Conclusion and Outlook** ... 183

8.1 Monograph Summary .. 183

8.2 Future Work ... 187

Appendix ... 191

Bibliography .. 211

Index ... 221
Hardware/Software Architectures for Low-Power Embedded Multimedia Systems
Shafique, M.; Henkel, J.
2011, XXI, 223 p., Hardcover
ISBN: 978-1-4419-9691-6