Chapter 2
D-MOSFET Structure

The first power MOSFET structure commercially introduced by the power semiconductor industry was the double-diffused or D-MOSFET structure. The channel length of this device could be reduced to sub-micron dimensions by controlling the diffusion depths of the P-base and N+ source regions without resorting to expensive lithography tools [1]. The device fabrication process relied up on the available planar gate technology used to manufacture CMOS integrated circuits. These devices found applications in power electronic circuits that operated at low (<100 V) voltages. The fast switching speed and ruggedness of the D-MOSFET structure were significant advantages compared with the performance of the available bipolar power transistor.

The physics of operation of the power D-MOSFET structure has been analyzed in detail in the textbook [1]. In this chapter of the monograph, a brief description of the device operation is provided for completeness and for contrasting it to the advanced device structures that are discussed in later chapters. However, a detailed discussion of the characteristics of a device rated for blocking 30 V is provided here based up on the results of two-dimensional numerical simulations. These characteristics will be used as a bench-mark for comparison with the characteristics of the advanced power MOSFET structures described in other chapters.

2.1 The D-MOSFET Structure

A cross-section of the basic cell structure for the D-MOSFET structure is illustrated in Fig. 2.1. This device structure is fabricated by starting with an N-type epitaxial layer grown on a heavily doped N+ substrate. The channel is formed by the difference in lateral extension of the P-base and N+ source regions produced by their diffusion cycles. Both regions are self-aligned to the left-hand-side and right-hand-side of the gate region during ion-implantation to introduce the respective dopants. A refractory gate electrode, such as polysilicon, is required to allow diffusion of the dopants under the gate electrode at elevated temperatures.
Without the application of a gate bias, a high voltage can be supported in the D-MOSFET structure when a positive bias is applied to the drain. In this case, junction J_1 formed between the P-Base region and the N-drift region becomes reverse biased. The voltage is supported mainly within the thick lightly doped N-drift region. Drain current flow in the D-MOSFET structure is induced by the application of a positive bias to the gate electrode. This produces an inversion layer at the surface of the P-base region under the gate electrode. This inversion layer channel provides a path for transport of electrons from the source to the drain when a positive drain voltage is applied.

After transport from the source region through the channel, the electrons enter the N-drift region at the upper surface of the device structure. They are then transported through a relatively narrow JFET region located between the adjacent P-base regions within the D-MOSFET structure. The constriction of the current flow through the JFET region substantially increases the internal resistance of the D-MOSFET structure. A careful optimization of the gate width (W_G) is required, in order to minimize the internal resistance for this structure as discussed in the textbook. In addition, it is customary to enhance the doping concentration in the JFET region to reduce the resistance to current flow through this portion of the device structure.

After being transported through the JFET region, the electrons enter the N-drift region below junction J_1. The current spreads from the relatively narrow JFET region to the entire width of the cell cross-section. This non-uniform current distribution within the drift region enhances its resistance making the internal resistance of the D-MOSFET structure larger than the ideal specific on-resistance of the drift region. The large internal resistance for the D-MOSFET structure has provided motivation for the development of the trench-gate power MOSFET.

Fig. 2.1 The D-MOSFET structure
structure in the 1990s and the advanced power MOSFET structures discussed in this monograph.

2.2 Power D-MOSFET On-Resistance

The power D-MOSFET structure is shown in Fig. 2.2 with its internal resistance components. There are eight resistances that must be analyzed in order to obtain the total on-resistance between the source and drain electrodes when the device is turned-on. It is customary to analyze not only the resistance for a particular cell design but also the specific resistance for each of the components by multiplying the cell resistance with the cell area. The total on-resistance for the power MOSFET structure is obtained by the addition of all the resistances because they are considered to be in series in the current path between the source and the drain electrodes:

\[
R_{ON} = R_{CS} + R_{N+} + R_{CH} + R_A + R_{JFET} + R_D + R_{SUB} + R_{CD} \tag{2.1}
\]

Each of the resistances within the power D-MOSFET structure is analyzed below by using the procedure described in the textbook. In the textbook, it was demonstrated that the contributions from the source contact resistance (\(R_{CS}\)), the source resistance (\(R_{N+}\)), and the drain contact resistance (\(R_{CD}\)) are very small and will therefore be neglected in this and subsequent chapters.

![Power D-MOSFET structure with its internal resistances](image-url)
The on-resistance of the basic structure for the power D-MOSFET device has been analyzed in the textbook. Typical power D-MOSFET products include a deep P$^+$ region as illustrated in Fig. 2.3 to improve their ruggedness and safe-operating-area as discussed in the textbook. The analysis of the power D-MOSFET structure in this monograph includes the presence of this deep P$^+$ region. The blocking voltage for the device must be supported at the junction J$_3$ between the P$^+$ region and the N-drift region. The thickness of the N-drift region below the deep P$^+$ region must be sufficient to allow supporting the blocking voltage. This increases the on-resistance contribution from the drift region as discussed below.

A cross-section of the power D-MOSFET structure is illustrated in Fig. 2.4 with various dimensions that can be used for the analysis of the on-resistance components. Here, W_{Cell} is the pitch for the linear cell geometry analyzed in this section; W_G is the width of the gate electrode; W_{PW} is the width of the polysilicon window; W_C is the width of the contact window to the N$^+$ source and P-base regions; and W_S is the width of the photoresist mask used during the N$^+$ source ion-implantation. The junction depths of the P-base region and the deep P$^+$ region are x_{JP} and x_{JP^+}, respectively.

Fig. 2.3 Power D-MOSFET structure with deep P$^+$ region

The on-resistance of the basic structure for the power D-MOSFET device has been analyzed in the textbook. Typical power D-MOSFET products include a deep P$^+$ region as illustrated in Fig. 2.3 to improve their ruggedness and safe-operating-area as discussed in the textbook. The analysis of the power D-MOSFET structure in this monograph includes the presence of this deep P$^+$ region. The blocking voltage for the device must be supported at the junction J$_3$ between the P$^+$ region and the N-drift region. The thickness of the N-drift region below the deep P$^+$ region must be sufficient to allow supporting the blocking voltage. This increases the on-resistance contribution from the drift region as discussed below.

A cross-section of the power D-MOSFET structure is illustrated in Fig. 2.4 with various dimensions that can be used for the analysis of the on-resistance components. Here, W_{Cell} is the pitch for the linear cell geometry analyzed in this section; W_G is the width of the gate electrode; W_{PW} is the width of the polysilicon window; W_C is the width of the contact window to the N$^+$ source and P-base regions; and W_S is the width of the photoresist mask used during the N$^+$ source ion-implantation. The junction depths of the P-base region and the deep P$^+$ region are x_{JP} and x_{JP^+}, respectively.

In this monograph, the characteristics of advanced power MOSFET structures with 30-V blocking capability will be analyzed for power supply applications. For this voltage rating and the typical lithography design rules, the power D-MOSFET structure has a cell pitch (W_{Cell}) of 12 μm with a polysilicon gate width (W_G) of 8 μm. Typical junction depths for the N$^+$ source region, P-base region, and the P$^+$ region are 0.5, 1.5, and 2.5 μm, respectively. The doping concentration of the N-drift region required to achieve a 30-V blocking voltage capability, with an
80% reduction due to the edge termination, is $1.6 \times 10^{16}/\text{cm}^3$. The thickness of the N-drift region required below the deep P$^+$ region is 2.6 µm. It is worth pointing out that the entire blocking voltage is not supported within the N-drift region because of the graded doping profile of the P-base and the P$^+$ regions. This allows increasing the doping concentration and reducing the thickness of the N-drift region to achieve a smaller specific on-resistance for the D-MOSFET structure.

The current flow pattern in the power D-MOSFET structure is indicated by the shaded area in Fig. 2.4. In the first Model A for the specific on-resistance, it will be assumed that the JFET region extends to the bottom of the deep P$^+$ region. Consequently, this model assumes that there is current constriction by the deep P$^+$ regions. In the model, it is assumed that the current spreads at a 45° angle in the drift region and then becomes uniformly distributed when it enters the N$^+$ substrate. For the dimensions provided above for the D-MOSFET structure with 30-V blocking voltage capability, the current does not spread across the entire region below the windows in the gate electrode resulting in the current distribution shown in Fig. 2.4 by the shaded area.

An alternate Model B for the current distribution in the D-MOSFET structure is illustrated in Fig. 2.5. In this model, it is assumed that the junction formed by the P$^+$ regions (J_3) is too far from the current path in the JFET region to contribute to current constriction. The JFET current constriction is then assumed to be associated only with the junction (J_1) formed by the P-base region. The JFET region is then assumed to extend to the bottom of the P-base region as shown in the figure by the shaded area. This model produces a smaller contribution to the specific

![Fig. 2.4 Power D-MOSFET structure with current flow model A used for analysis of its internal resistances](image-url)
on-resistance from the JFET region than Model A but the contribution from the drift region is enhanced.

2.2.1 Channel Resistance

The contribution to the specific on-resistance from the channel in the D-MOSFET structure is the same for models A and B. As derived in the textbook [1], the specific on-resistance contributed by the channel in the power D-MOSFET structure is given by:

$$R_{CH,SP} = \frac{L_{CH}W_{Cell}}{2\mu_C V_{TH} (V_G - V_{TH})}$$ \hspace{1cm} (2.2)

In the case of the 30-V power MOSFET structures used for power supply applications, it is customary to provide the on-resistance at a gate bias of 4.5 and 10 V. Assuming a gate oxide thickness is 500 Å, an inversion layer mobility of 450 cm²/V s (to match the mobility used in the numerical simulations discussed later in this section), and a threshold voltage of 2 V in the above equation for the power D-MOSFET design with a cell width of 12 µm and gate electrode width of 8 µm, the specific resistance contributed by the channel at a gate bias of 4.5 V is found to be 0.784 mΩ cm². The specific on-resistance of the D-MOSFET structure is reduced to 0.245 mΩ cm² when the gate bias is increased to 10 V.
2.2.2 Accumulation Resistance

In the power MOSFET structure, the current flowing through the inversion channel enters the drift region at the edge of the P-base junction. The current then spreads from the edge of the P-base junction into the JFET region. The current spreading phenomenon is aided by the formation of an accumulation layer in the semiconductor below the gate oxide due to the positive gate bias applied to turn-on the device. The specific on-resistance contributed by the accumulation layer in the power D-MOSFET structure is given by [1]:

\[
R_{A,SP} = K_A \frac{(W_G - 2x_{JP})W_{cell}}{4\mu nA C_{ox}(V_G - V_{TH})}
\]

(2.3)

In writing this expression, a coefficient \(K_A \) has been introduced to account for the current spreading from the accumulation layer into the JFET region. A typical value for this coefficient is 0.6 based upon the current flow observed from numerical simulations of power D-MOSFET structures. The threshold voltage in the expression is for the on-set of formation of the accumulation layer. A zero threshold voltage will be assumed here when performing the analytical computations. Note that the junction depth of the P-base region (and not the P⁺ region) defines the length of the accumulation region.

For the 30-V power D-MOSFET design with a cell width of 12 µm and gate width of 8 µm, the specific resistance contributed by the accumulation layer at a gate bias of 4.5 V is 0.294 mΩ cm² if the P-base junction depth (x_{JP}) is 1.5 µm and the gate oxide thickness is 500 Å. An accumulation layer mobility of 1,000 cm²/V s was used in this calculation to match the mobility used in the numerical simulations (discussed later in this section). When the gate bias is increased to 10 V, the specific resistance contributed by the accumulation layer is reduced to 0.132 mΩ cm².

2.2.3 JFET Resistance

The electrons entering from the channel into the drift region are distributed into the JFET region via the accumulation layer formed under the gate electrode. The spreading of current in this region was accounted for by using a constant \(K_A \) of 0.6 for the accumulation layer resistance. Consequently, the current flow through the JFET region can be treated with a uniform current density. In the power D-MOSFET structure, the cross-sectional area for the JFET region increases with distance below the semiconductor surface due to the planar shape of the P-base junction. However, in order to simplify the analysis, a uniform cross-section for the current flow with a width ‘a’ will be assumed for the JFET region as illustrated by
the shaded area in Figs. 2.4 and 2.5. The width of the current flow is related to the device structural parameters:

\[a = (W_G - 2x_{JP} - 2W_0) \] (2.4)

where \(W_0 \) is the zero-bias depletion width for the JFET region. The depletion region boundary is indicated in the figures with the dashed lines. In the models, it is assumed that no current can flow through the depleted region because all the free carriers have been swept out by the prevailing electric field across the junction. The zero-bias depletion width (\(W_0 \)) in the JFET region can be computed by using the doping concentrations on both sides of the junction:

\[W_0 = \sqrt{\frac{2\varepsilon S N_A V_{bi}}{qN_{DJ} (N_A + N_{DJ})}} \] (2.5)

where \(N_A \) is the doping concentration in the P-base region and \(N_{DJ} \) is the doping concentration in the JFET region. In the above equation, the built-in potential is also related to the doping concentrations on both sides of the junction:

\[V_{bi} = \frac{kT}{q} \ln \left(\frac{N_A N_{DJ}}{n_i^2} \right) \] (2.6)

In practical devices, the P-base region is diffused into the N-drift region producing a graded doping profile. However, these expressions based upon assuming a uniform doping concentration for the P-base region are adequate for analytical computations. It is common practice to enhance the doping concentration for the JFET region above that for the drift region. It is therefore appropriate to use the enhanced doping concentration \((N_{DJ})_o \) of the JFET region in the above expressions.

In Model A, the JFET region is assumed to extend to the bottom the P⁺ region. The specific on-resistance contributed by the JFET region in the power D-MOSFET structure can then be obtained by using:

\[R_{JFET,SP} = \frac{\rho_{JFET} x_{JP} W_{Cell}}{(W_G - 2x_{JP} - 2W_0)} \] (2.7)

where \(\rho_{JFET} \) is the resistivity of the JFET region given by:

\[\rho_{JFET} = \frac{1}{q \mu_n N_{DJ}} \] (2.8)

where \(\mu_n \) is the bulk mobility appropriate to the doping level of the JFET region. Typical power D-MOSFET structures are fabricated by using a diffused JFET doping profile with its maximum concentration at the surface and a depth
approximately the same as the junction depth of the P-base region. In an analytical model, it is convenient to use an average doping concentration for the JFET region. The resistivity for the JFET region is found to be 0.269 Ω cm corresponding to an average JFET doping concentration of 2.0×10^{16}/cm3. The zero-bias depletion width in the JFET region for this JFET doping concentration is 0.228 μm. For the 30-V power D-MOSFET design with a cell width of 12 μm and gate width of 8 μm, the specific resistance contributed by the JFET region is found to be 0.178 mΩ cm2 based up on using the above parameters.

In Model B, the JFET region is assumed to extend to the bottom the P-base region. The specific on-resistance contributed by the JFET region in the power D-MOSFET structure can then be obtained by using:

$$R_{JFET,SP} = \frac{\rho_{JFET} x_{JP} W_{Cell}}{(W_G - 2x_{JP} - 2W_0)}$$ (2.9)

For the 30-V power D-MOSFET design with a cell width of 12 μm and gate width of 8 μm, the specific resistance contributed by the JFET region is found to be 0.107 mΩ cm2 based up on using the same parameters as for Model A. It can be observed that the JFET resistance is smaller in Model B than for Model A due to the shorter path for current flow in the vertical direction.

2.2.4 Drift Region Resistance

The resistance contributed by the drift region in the power D-MOSFET structure is enhanced well above that for the ideal drift region due to current spreading from the JFET region. The cross-sectional area for the current flow in the drift region increases from the width ‘a’ of the JFET region as illustrated in Figs. 2.4 and 2.5 by the shaded area. Several models for this current spreading have been proposed in the literature [2]. The current distribution model used in this monograph is based up on a spreading angle of 45°.

In the case of Model A, the current spreads from the bottom of the P$^+$ region as shown in Fig. 2.4. The specific on-resistance contributed by the drift region in the power D-MOSFET structure with this model is given by:

$$R_{D,SP} = \frac{\rho_D W_{Cell}}{2} \ln \left[\frac{a + 2t}{a} \right]$$ (2.10)

For the parameters given above for this structure, the dimension ‘a’ in the equation is found to be 2.54 μm. For the 30-V power MOSFET design with a cell width of 12 μm and gate width of 8 μm, the specific resistance contributed by the drift region is then found to be 0.149 mΩ cm2 by using a resistivity of the drift region of 0.325 Ω cm based upon a doping concentration of 1.6×10^{16}/cm3.
In the case of Model B, the current spreads from the bottom of the P-base region as shown in Fig. 2.5. The specific on-resistance contributed by the drift region in the power D-MOSFET structure with this model is given by:

\[
R_{D,SP} = \frac{\rho_D W_{Cell}}{2} \ln \left[\frac{a + 2(t_{JP} - x_{JP})}{a + 2(t_{JP} + x_{JP})} \right]
\]

(2.11)

For the parameters given above for the 30-V power MOSFET design with a cell width of 12 µm and gate width of 8 µm, the specific resistance contributed by the drift region is then found to be 0.185 m\(\Omega\) cm\(^2\) by using a resistivity of the drift region of 0.325 \(\Omega\) cm based upon a doping concentration of \(1.6 \times 10^{16}/cm^3\). Consequently, the drift region resistance contribution is larger for Model B than for Model A.

2.2.5 \(N^+\) Substrate Resistance

When the current reaches the bottom of the N-drift region, it is very quickly distributed throughout the heavily doped \(N^+\) substrate. The current flow through the substrate can therefore be assumed to occur with a uniform cross-sectional area. Under this assumption, the specific resistance contributed by the \(N^+\) substrate is given by:

\[
R_{SUB,SP} = \rho_{SUB} t_{SUB}
\]

(2.12)

where \(\rho_{SUB}\) and \(t_{SUB}\) are the resistivity and thickness of the \(N^+\) substrate. The contribution from the \(N^+\) substrate is therefore dependent up on the available technology for reducing its thickness and resistivity while maintaining good manufacturability. Since many manufacturers have reduced this contribution to well below that from the other resistance contributions, the substrate contribution will be assumed to be negligible in this monograph for all the power MOSFET structures.

2.2.6 Drain and Source Contact Resistance

During the initial development of power MOSFET products, the contact resistance to the source region was performed using aluminum metallization. This method resulted in relatively high contact resistance to the \(N^+\) source region. With the advent of metal-silicides for ohmic contacts, the source contact resistance is now much smaller than the other resistance components and can be neglected for all the power MOSFET structures discussed in this monograph. The process technology for making contacts to the drain regions has also evolved to the state that this resistance can be neglected for power MOSFET structures.
2.2.7 Total On-Resistance

The total specific on-resistance for the power D-MOSFET structure can be computed by adding all the above components for the on-resistance. For the case of the 30-V power D-MOSFET design with a cell pitch (W_{Cell}) of 12 μm and gate width of 8 μm, the total specific on-resistance is found to be 1.405 mΩ cm2 at a gate bias of 4.5 V and 0.704 mΩ cm2 at a gate bias of 10 V by using Model A. For this cell design, the total specific on-resistance is found to be 1.370 mΩ cm2 at a gate bias of 4.5 V and 0.669 mΩ cm2 at a gate bias of 10 V by using Model B. Consequently, Model B predicts a smaller total specific on-resistance than Model A. The contributions from each of the components of the on-resistance are summarized in Figs. 2.6 and 2.7 for the two models.

The ideal specific on-resistance for a drift region is given by:

$$R_{\text{IDEAL,SP}} = \frac{W_{PP}}{q \mu_n N_D} \quad (2.13)$$

where W_{PP} is the parallel-plane depletion width at breakdown, N_D is the doping concentration of the drift region to sustain the blocking voltage, and μ_n is the mobility for electrons corresponding to this doping concentration. For the case of

<table>
<thead>
<tr>
<th>Resistance</th>
<th>$V_G = 4.5$ V (mΩ⋅cm2)</th>
<th>$V_G = 10$ V (mΩ⋅cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel ($R_{CH,SP}$)</td>
<td>0.784</td>
<td>0.245</td>
</tr>
<tr>
<td>Accumulation ($R_{A,SP}$)</td>
<td>0.294</td>
<td>0.132</td>
</tr>
<tr>
<td>JFET ($R_{JFET,SP}$)</td>
<td>0.178</td>
<td>0.178</td>
</tr>
<tr>
<td>Drift ($R_{D,SP}$)</td>
<td>0.149</td>
<td>0.149</td>
</tr>
<tr>
<td>Total ($R_{T,SP}$)</td>
<td>1.405</td>
<td>0.704</td>
</tr>
</tbody>
</table>

Fig. 2.6 On-resistance components within the 30-V power D-MOSFET structure using model A
a blocking voltage of 30 V, the depletion width and doping concentration are found to be \(2.2 \times 10^{16}/\text{cm}^3\) and 1.4 \(\mu\text{m}\), respectively. Using the electron mobility for this doping level, the ideal specific on-resistance is found to be 0.034 m\(\Omega\) cm\(^2\). Since the device is constrained by the impact of an 80% reduction of breakdown voltage due to the edge termination, it is worth computing the ideal specific on-resistance for this case for comparison with the device. For the case of a blocking voltage of 37.5 V, the depletion width and doping concentration are found to be \(1.6 \times 10^{16}/\text{cm}^3\) and 1.8 \(\mu\text{m}\), respectively. Using the electron mobility for this doping level, the ideal specific on-resistance is found to be 0.059 m\(\Omega\) cm\(^2\). It can be observed that the specific on-resistance for the D-MOSFET structure is far greater than these ideal specific on-resistances.

2.2.7.1 Simulation Results

The results of two-dimensional numerical simulations on the 30-V power D-MOSFET structure are described here to provide a more detailed understanding of the underlying device physics and operation. The structure used for the numerical simulations had a drift region thickness of 2.6 \(\mu\text{m}\) below the \(P^+\) region with a doping concentration of \(1.6 \times 10^{16}/\text{cm}^3\). The \(P\)-base region and \(N^+\) source regions had depths of 1.7 and 0.7 \(\mu\text{m}\), respectively. The doping concentration in the JFET region was enhanced by using an additional n-type doping concentration of \(1 \times 10^{16}/\text{cm}^3\) with a depth of 1.5 \(\mu\text{m}\). For the numerical simulations, half the cell (with a width of 6 \(\mu\text{m}\)) shown in Fig. 2.1 was utilized as a unit cell that is representative of the structure.

A three dimensional view of the doping distribution in the D-MOSFET structure is shown in Fig. 2.8 from the left hand edge of the structure to the center of the polysilicon gate region. The \(N^+\) source and \(P\)-base regions are aligned to the gate edge, which is located at 2 \(\mu\text{m}\) from the left hand side. The structure also includes a \(P^+\) region located at the left hand side to suppress the parasitic bipolar transistor. The enhancement of the doping in the N-drift region near the surface is due to the additional JFET doping.

The lateral doping profile taken along the surface under the gate electrode is shown in Fig. 2.9. From the profile, it can be observed that the doping concentration of the JFET region has been increased to \(2.3 \times 10^{16}/\text{cm}^3\) due to the additional doping. The lateral extension of the \(P\)-base and \(N^+\) source regions are 1.7 and 0.7 \(\mu\text{m}\) leading to a channel length of 1.0 \(\mu\text{m}\). The surface concentration for the \(P\)-base region was chosen to obtain a maximum compensated \(P\)-type doping concentration in the channel of \(1.0 \times 10^{17}/\text{cm}^3\).

The transfer characteristics for the D-MOSFET structure were obtained using numerical simulations with a drain bias of 0.1 V at 300 and 400\(^\circ\)K. The resulting transfer characteristics are shown in Fig. 2.10. From this graph, a threshold voltage of 3.1 and 2.6 V can be extracted at 300 and 400\(^\circ\)K, respectively. The threshold voltage decreases by 16% when the temperature increases. The specific on-resistance can be obtained from the transfer characteristics at any gate bias voltage.
Fig. 2.8 Doping distribution for the D-MOSFET structure

Fig. 2.9 Channel doping profile for the D-MOSFET structure
For the case of a gate bias of 4.5 V and 300 °K, the specific in-resistance is found to be 1.382 mΩ cm². For the case of a gate bias of 10 V and 300 °K, the specific in-resistance is found to be 0.717 mΩ cm². These values are in close agreement with either the Model A or Model B for the current distribution within the D-MOSFET structure.

The on-state current flow pattern within the D-MOSFET structure at a small drain bias of 0.1 V and a gate bias of 4.5 V is shown in Fig. 2.11. In the figure, the depletion layer boundary is shown by the dotted lines and the junction boundary is delineated by the dashed line. The depletion layer width (W₀) in the JFET region is about 0.2 μm in good agreement with the value computed using the analytical model. It can be observed that the current flows from the channel and distributes into the JFET region via the accumulation layer. Within the JFET region, the cross-sectional area is approximately constant with a width (a/2) of 2.1 μm. From the figure, it can be seen that the current spreading from the JFET region begins at the depth of the P-base region rather than the deep P⁺ region. This indicates that the Model B is more suitable than Model A for analysis of the on-resistance of the D-MOSFET structure. The current spreads from the JFET region to the drift region at a 45° angle as assumed in the models.

In order to compare the on-resistance values extracted from the numerical simulations with those predicted by the analytical models, it is necessary to extract the mobility in the inversion and accumulation layers within the simulated D-MOSFET structure. The channel and accumulation layer mobility were extracted

Fig. 2.10 Transfer characteristics of the D-MOSFET structure
by simulation of a long channel lateral MOSFET structure with the same gate oxide thickness. The inversion layer mobility was found to be 450 cm²/V s while that for the accumulation layer was found to be 1,000 cm²/V s at a gate bias of 10 V. These values were consequently used in the analytical models when calculating the specific on-resistance.

2.3 Blocking Voltage

The power D-MOSFET structure must be designed to support a high voltage in the first quadrant when the drain bias voltage is positive. During operation in the blocking mode, the gate electrode is shorted to the source electrode by the external gate bias circuit. The application of a positive drain bias voltage produces a reverse bias across junction J₁ between the P-base region and the N-drift region, as well as across junction J₃ between the deep P⁺ region and the N-drift region. Most of the applied voltage is supported across the N-drift region. The doping concentration of donors in the N-epitaxial drift region and its thickness must be chosen to attain the desired breakdown voltage. In devices designed to support low voltages (less than 50 V), the
doping concentration of the P-base region is comparable to the doping concentration of the N-drift region leading to a graded doping profile. Consequently, a significant fraction of the applied drain voltage is supported across a depletion region formed in the P-base region. The highest doping concentration in the P-base region is limited by the need to keep the threshold voltage around 2 V to achieve a low on-resistance at a gate bias of 4.5 V as discussed in the previous section.

For the allowable maximum P-base doping concentration, it is desirable to make the depth of the P-base region as small as possible to reduce the channel length in the power MOSFET structure. However, if the junction depth of the P-base region is made too small, the depletion region in the P-base region will reach through to the N⁺ source region leading to a reduced breakdown voltage. In the power D-MOSFET structure, the gate region is not screened from the drain bias due to cylindrical shape of the planar junctions. This results in significant depletion of the P-base region making the channel length of this structure larger than that of the advanced power MOSFET structures discussed in this monograph.

2.3.1 Impact of Edge Termination

In practical devices, the maximum blocking voltage (BV) of the power MOSFET is invariably decided by the edge termination that surrounds the device cell structure. The most commonly used edge termination for power D-MOSFET devices is based up on floating field rings and field plates. The enhanced electric field at the edges limits the breakdown voltage to about 80% of the parallel-plane breakdown voltage (\(BV_{PP}\)):

\[
BV_{PP} = \left(\frac{BV}{0.8} \right)
\]

(2.14)

Consequently, the doping and thickness of the N-drift region must be chosen to achieve a parallel-plane breakdown voltage that is 25% larger than the blocking voltage for the device:

\[
N_D = \left(\frac{4.45 \times 10^{13}}{BV_{PP}} \right)^{4/3}
\]

(2.15)

A common design error that can occur is to make the thickness of the drift region below the P-N junction equal to the depletion width for the ideal parallel-plane junction with the above doping concentration. In actuality, the maximum depletion width is limited to that associated with the blocking voltage (BV) of the structure. The thickness of the drift region required below the P-N junction is therefore less than the depletion width for the ideal parallel-plane junction with the above doping concentration, and is given by:
The resistance of the drift region can be reduced by using this thickness rather than the maximum depletion width corresponding to the doping concentration given by (2.15).

2.3.2 Impact of Graded Doping Profile

For power MOSFET structures with low (less than 50 V) breakdown voltages, the doping concentration of the drift region is comparable to the doping concentration of the P-base region. This produces a graded doping profile for the junction J1 between the P-base region and the N-drift region as illustrated in Fig. 2.12. In this figure, the concentrations of the donors and acceptors are shown by the solid lines while the dashed lines represent the net doping concentration after taking into account compensation near the junctions.

The electric field developed across junction J1 during the blocking mode is also illustrated in Fig. 2.12. Due to the graded doping profile, the electric field extends on both sides of junction J1. The electric field in the P-base region supports a portion of the applied positive drain voltage. This implies that the same breakdown voltage can be achieved with a larger doping concentration and a smaller thickness for the N-drift region. This improvement can be translated to increasing the breakdown

![Fig. 2.12 Doping profile and electric field distribution for the power MOSFET structure](image-url)
voltage at the edge termination if the P-base region is used at the edges of the power MOSFET structure. A reduction of the resistance for the power MOSFET structure can be achieved by taking into account the voltage supported within the P-base region. An improvement in the specific on-resistance of 20% can be achieved by taking into account the graded doping profile.

2.3.2.1 Simulation Results

The results of two-dimensional numerical simulations on the 30-V power D-MOSFET structure are described here to provide a more detailed understanding of the underlying device physics and operation during the blocking mode. The structure used for the numerical simulations had the same parameters as the structure described in the previous section. The blocking characteristic for the D-MOSFET cell structure is shown in Fig. 2.13 for 300°C. It can be observed that the cell is capable of supporting 42 V. This provides enough margin to achieve a device blocking voltage capability of slightly over 30 V after accounting for the reduction due to the edge termination.

It is instructive to examine the potential contours inside the power D-MOSFET structure when it is operating in the blocking mode. This allows determination of the voltage distribution within the structure and the penetration of the depletion

![Blocking characteristics for the D-MOSFET structure](image)
region in the P-base region with increasing drain bias voltage. The potential contours for the D-MOSFET structure obtained using the numerical simulations with zero gate bias and various drain bias voltages are shown in Figs. 2.14–2.17. From these figures, it can be observed that the voltage distribution at the junction J1 between the P-base region and the N-drift region is similar when proceeding from the surface towards the drain. This indicates that the surface region is not screened from the drain bias by the junctions. Consequently, the depletion region in the P-base region penetrates through a significant fraction of the P-base region when the drain bias is increased to 30 V. Any decrease in the doping concentration of the P-base region leads to reach-through breakdown limiting the ability to reduce the threshold voltage. The advanced power MOSFET structures discussed in subsequent chapters allow the screening of the semiconductor surface under the gate from the drain potential allowing the formation of shorter channel lengths to reduce the on-resistance.

It is insightful to also examine the electric field profile inside the power D-MOSFET structure when it is operating in the blocking mode. The electric field profile obtained through the junction between the deep P+ region and the N-drift region is shown in Fig. 2.18. It can be observed that the maximum electric field occurs as expected at the junction at a depth of 2.6 μm from the surface. This figure demonstrates that a substantial portion of the voltage is supported inside the P+ region due to its graded doping profile near the junction.

Fig. 2.14 Potential contours in the D-MOSFET structure
Fig. 2.15 Potential contours in the D-MOSFET structure

Bias: $V_G = 0$ V; $V_D = 10$ V; $\Delta V = 1$ V

Fig. 2.16 Potential contours in the D-MOSFET structure

Bias: $V_G = 0$ V; $V_D = 20$ V; $\Delta V = 2$ V
Bias: $V_G = 0$ V; $V_D = 30$ V; $\Delta V = 2$ V

Fig. 2.17 Potential contours in the D-MOSFET structure

Fig. 2.18 Electric field distribution in the D-MOSFET structure
The doping concentration for the N-drift region can be increased while achieving the target blocking voltage capability due to this phenomenon. This allows reduction of the specific on-resistance for the power D-MOSFET structure.

The electric field profile taken through the middle of the gate electrode (at $x = 6 \text{ microns}$) is provided in Fig. 2.19. It can be observed that the electric field in the gate oxide is larger than in the semiconductor due to the difference in dielectric constant for the two materials. A change in the slope of the electric field profile can be observed close to the semiconductor surface due to the enhanced doping concentration arising from the JFET doping. The electric field in the oxide increases rapidly with increasing drain bias because the gate oxide is not shielded from the drain potential. The high electric field in the gate oxide in the blocking mode has been found to create reliability problems. The electric field in the gate oxide for the power D-MOSFET structure is just below the limit for reliable operation allowing stable device performance over long periods of time.

2.4 Output Characteristics

The output characteristics of the power D-MOSFET structure are important to the loci for the switching waveforms when it is operating in power circuits. The saturated drain current for the power MOSFET structure is given by:
\[I_{D,\text{sat}} = \frac{Z_{\mu m} C_{OX}}{(L_{CH} - \Delta L_{CH})} (V_G - V_{TH})^2 \]

(2.17)

where \(\Delta L_{CH} \) is reduction in the channel length due to depletion of the P-base region with increasing drain bias voltage. With sufficiently high doping concentration of the P-base region, the modulation of channel length can be made sufficiently small to ensure a high output resistance. The saturated drain current in the power D-MOSFET structure then increases as the square of the gate bias voltage.

2.4.1 Simulation Example

The output characteristics of the 30-V power D-MOSFET structure were obtained by using two-dimensional numerical simulations using various gate bias voltages. All the device parameters used for these numerical simulations are the same as those used in the previous sections. The output characteristics of the power D-MOSFET obtained using the simulations are shown in Fig. 2.20. The structure exhibits excellent current saturation with relatively flat output characteristics. The traces for increasing gate bias voltages are non-uniformly spaced due to the square-law behavior of the transfer characteristics.

![Output characteristics for the power D-MOSFET structure](image)

Fig. 2.20 Output characteristics for the power D-MOSFET structure
2.5 Device Capacitances

One of attractive features of all power MOSFET structures is unipolar current transport. The absence of minority carrier injection allows interruption of the current flow immediately after reduction of the gate bias below the threshold voltage. Although this implies a very fast switching speed for the power MOSFET structures, in practice the switching speed is limited by the device capacitances. The input drive signal for a power MOSFET structure is applied to the gate electrode, which is a part of a Metal-Oxide-Semiconductor sandwich. Due to the small thickness of the gate oxide and large device active area, the MOS sandwich comprises a significant capacitance. Analysis of this capacitance requires taking into account the formation of a depletion layer in the semiconductor under certain bias conditions. The rate at which the power MOSFET structure can be switched between the on- and off-states is determined by the rate at which the input capacitance can be charged or discharged. In addition, the capacitance between the drain and the gate electrodes has been found to play an important role in determining the drain current and voltage transitions during the switching event.

The capacitances within the power D-MOSFET structure have been analyzed in detail in the textbook [1]. The specific input (or gate) capacitance for the power D-MOSFET structure is given by:

\[
C_{IN,SP} = C_{N+} + C_P + C_{SM} = \frac{2x_{JP}}{W_{Cell}} \left(\frac{e_{OX}}{t_{OX}} \right) + \frac{W_G}{W_{Cell}} \left(\frac{e_{OX}}{t_{IEOX}} \right)
\]

(2.18)

where \(t_{OX}\) and \(t_{IEOX}\) are the thicknesses of the gate and inter-electrode oxides, respectively. For a 30-V power D-MOSFET structure with a cell pitch (\(W_{CELL}\) in Fig. 2.4) of 12 \(\mu m\) and gate electrode width of 8 \(\mu m\), the input capacitance is found to be 22 \(nF/cm^2\) for a gate oxide thickness of 500 \(\AA\) and an inter-metal dielectric thickness of 5,000 \(\AA\).

The capacitance between the gate and drain electrodes (also called the reverse transfer capacitance) is determined by the width of the JFET region where the gate electrode overlaps the N-drift region. The MOS structure in this portion of the power D-MOSFET structure operates under deep depletion conditions when a positive voltage is applied to the drain. The gate-drain capacitance for the power D-MOSFET structure is given by:

\[
C_{GD,SP} = \frac{(W_G - 2x_{PL})}{W_{Cell}} \left(\frac{C_{OX}C_{S,M}}{C_{OX} + C_{S,M}} \right)
\]

(2.19)

where \(C_{S,M}\) is the semiconductor capacitance under the gate oxide, which decreases with increasing drain bias voltage. The specific capacitance of the semiconductor depletion region can be obtained by computation of the depletion layer width.
The depletion layer width in the semiconductor under the gate oxide can be obtained using:

\[
W_{D,MOS} = \frac{\varepsilon_S}{C_{OX}} \left\{ \sqrt{1 + \frac{2V_D C_{OX}^2}{q\varepsilon_S N_D} - 1} \right\}
\]

(2.20)

The specific capacitance for the semiconductor is then obtained using:

\[
C_{S,M} = \frac{\varepsilon_S}{W_{D,MOS}}
\]

(2.21)

The gate-drain (or reverse transfer) capacitance can be computed by using (2.19) with the above equations to determine the semiconductor capacitance as a function of the drain bias voltage.

The specific gate transfer capacitance obtained by using the above analytical formulae is shown in Fig. 2.21 for the case of a power D-MOSFET structure with 12 \(\mu \text{m} \) cell pitch, and polysilicon window of 8 \(\mu \text{m} \). This structure has a gate oxide thickness of 500 \(\text{Å} \) and a lateral junction depth of 1.7 \(\mu \text{m} \) for the P-base region. The gate-drain (reverse transfer) capacitance decreases with increasing drain bias voltage due to the expansion of the depletion region in the semiconductor. At a drain bias of 20 V, the specific reverse transfer capacitance predicted by the analytical model is 3.0 nF/cm\(^2\) for this design.

![Graph showing gate-drain capacitance for the power D-MOSFET structure](image)

Fig. 2.21 Gate-drain capacitance for the power D-MOSFET structure
The output capacitance for the power D-MOSFET structure is associated with the capacitance of the junction between the P-base region and the N-drift region. The specific junction capacitance is given by [1]:

\[C_{S,J} = \frac{\varepsilon_S}{W_{D,J}} \quad (2.22) \]

where the depletion region thickness at the junction \(W_{D,J} \) is related to the drain bias voltage:

\[W_{D,J} = \sqrt{\frac{2\varepsilon_S(V_D + V_{bi})}{qN_D}} \quad (2.23) \]

This depletion layer width is larger than that under the gate oxide because all the applied drain voltage must be supported across the P-N junction. The specific output capacitance for the power D-MOSFET structure can then be obtained by assuming (Model A in the textbook) that the area of the junction within the cell is \((W_{PW} + 2x_{PL})Z\):

\[C_O = \left(\frac{W_{PW} + 2x_{PL}}{W_{cell}} \right) C_{S,J} \quad (2.24) \]

where \(x_{PL} \) is the lateral extension of the P-base region under the gate electrode.

The output capacitance obtained by using the above analytical model is shown in Fig. 2.22 for the case of the 30-V power D-MOSFET structure with 12 \(\mu \)m cell pitch.

![Fig. 2.22 Output capacitance for the power D-MOSFET structure](image-url)
and polysilicon window of 8 µm. This structure has a gate oxide thickness of 500 Å and a lateral junction depth of 1.7 µm for the P-base region. A built-in potential of 0.8 V was assumed for the P-base/N-drift junction, and the drift region has a doping concentration of 1.6×10^{16}/cm3. The specific output capacitance decreases with increasing drain bias voltage due to the expansion of the depletion region under the P-base region. At a drain bias of 20 V, the specific output capacitance predicted by the analytical model for this structure is 5 nF/cm2.

2.5.1 Simulation Example

The capacitances of the 30-V power D-MOSFET structure were extracted using two-dimensional numerical simulations on the structure with device parameters described in the previous sections. The input capacitance was extracted by performing the numerical simulations with a small AC signal superposed on the DC gate bias voltage. The input capacitances obtained for the power D-MOSFET structure are shown in Fig. 2.23 at a drain bias of 20 V. The input capacitance is comprised of two components – the first is between the gate electrode and the source electrode (C_{GS}) while the second is between the gate electrode and the base electrode (C_{GB}). The total input capacitance can be obtained by the addition of these capacitances because they are in parallel and share a common contact.

![Power D-MOSFET Structure](image)

Fig. 2.23 Input capacitances for the D-MOSFET structure
electrode in the actual power D-MOSFET structure. From the figure, a total specific input capacitance of about 20 nF/cm² is observed which is approximately independent of the gate bias voltage. At gate bias voltages below the threshold voltage, there is significant coupling between the P-base region and the gate electrode leading to a large contribution to the input capacitance from this path. When the gate bias voltage exceeds the threshold voltage, the inversion layer screens the P-base region from the gate electrode and couples it with the N⁺ source region. Consequently, the contribution from \(C_{GB} \) decreases to zero while that from \(C_{GS} \) increases as the gate bias voltage is increased. The specific input capacitance extracted from the numerical simulations is in excellent agreement with that calculated with the analytical model.

The drain-gate (reverse transfer) capacitance can be extracted by performing the numerical simulations with a small AC signal superposed on the DC drain bias voltage. The values obtained for the 30-V power D-MOSFET structure are shown in Fig. 2.24. The gate-to-drain and base-to-drain capacitances are shown in the figure for comparison. Both of these capacitances decrease with increasing drain bias voltage as expected from the analytical model. For this power D-MOSFET structure, the reverse transfer (gate-drain) capacitance is comparable in magnitude to the output (base-drain) capacitance. This implies a strong feedback path between the drain and the gate electrodes which is detrimental to the switching speed and power loss for the power D-MOSFET structure. The values for the reverse transfer and output capacitances obtained by using the analytical models are in excellent agreement with the simulation values.

![Fig. 2.24 Reverse transfer and output capacitances for the D-MOSFET structure](image-url)
2.6 Gate Charge

It is standard practice in the industry to provide the gate charge for power MOSFET structures as a measure of their switching performance. The gate charge can be extracted by the application of a constant current source at the gate terminal while turning-on the power MOSFET structure from the blocking state. The linearized current and voltage waveforms observed during the turn-on process are illustrated in Fig. 6.98 in the textbook [1]. The various components for the gate charge are also defined in this figure. During the turn-on process, the gate current is used to charge the capacitances C_{GS} and C_{GD} shown in Fig. 6.97. The most significant gate charge components for assessing the performance of the power MOSFET structures are Q_{SW} (the gate switching charge), Q_{GD} (the gate-drain charge), and Q_G (the total gate charge). These components are given by [1]:

$$Q_{GD} = \frac{2K_G q \varepsilon_s N_D}{C_{OX}} \left[\sqrt{1 + \frac{2V_{DS}C_{OX}^2}{q\varepsilon_s N_D}} - \sqrt{1 + \frac{2V_{ON}C_{OX}^2}{q\varepsilon_s N_D}} \right]$$ \hspace{1cm} (2.25)

$$Q_{SW} = [C_{GS} + C_{GD}(V_{DS})] \sqrt{\frac{J_{ON}W_{cell}}{2\mu_n C_{OX}}} + \frac{2K_G q \varepsilon_s N_D}{C_{OX}} \left[\sqrt{1 + \frac{2V_{DS}C_{OX}^2}{q\varepsilon_s N_D}} - \sqrt{1 + \frac{2V_{ON}C_{OX}^2}{q\varepsilon_s N_D}} \right]$$ \hspace{1cm} (2.26)

$$Q_G = [C_{GS} + C_{GD}(V_{ON})]V_{GP} + \frac{2K_G q \varepsilon_s N_D}{C_{OX}} \left[\sqrt{1 + \frac{2V_{DS}C_{OX}^2}{q\varepsilon_s N_D}} - \sqrt{1 + \frac{2V_{ON}C_{OX}^2}{q\varepsilon_s N_D}} \right] + [C_{GS} + C_{GD}(V_{ON})](V_G - V_{GP})$$ \hspace{1cm} (2.27)

The gate charge values obtained for the 30-V power D-MOSFET structure by using the above equations are: $Q_{GD} = 216$ nC/cm2; $Q_{SW} = 237$ nC/cm2; and $Q_G = 592$ nC/cm2. It can be concluded that the gate-drain charge (Q_{GD}) is the dominant portion (90%) of the gate switching charge (Q_{SW}).

Equations for the gate voltage, drain current, and drain voltage waveforms obtained by using the analytical model are provided in the textbook [1]. The waveforms obtained for the 30-V power D-MOSFET structure with 12 μm cell pitch and polysilicon gate width of 8 μm with a gate oxide thickness of 500 Å using these equations are provided in Fig. 2.25. A gate drive current density of 0.17 A/cm2 was used to turn on the device from a steady-state blocking voltage of 20 V to match the results of two dimensional numerical simulations discussed below. The gate geometry factor (K_G) obtained for this structure using the structural dimensions is 0.38.

The gate voltage initially increases linearly with time. After reaching the threshold voltage, the drain current can be observed to increase in a non-linear manner
because the transconductance is a function of the gate bias voltage. The drain current density increases until it reaches an on-state current density of 80 A/cm². This transition occurs rapidly when compared with the time taken for the drain voltage to decrease during the next time interval. The on-state current density determines the gate plateau voltage which has a value of 3.54 V. During the gate voltage plateau phase, the drain voltage decreases in a non-linear manner until it reaches the on-state voltage drop. After this time, the gate voltage again increases but at a slower rate than during the initial turn-on phase.

2.6.1 Simulation Example

The gate charge for the 30-V power D-MOSFET structure was extracted by using the results of two-dimensional numerical simulations of the cell described in the
previous sections. The device was turned-on from blocking state with a drain bias of 20 V by driving it using a gate current of 1×10^{-8} A/μm (equivalent to 0.17 A/cm² for the area of 6×10^{-8} cm²). Once the drain current density reached 80 A/cm², the drain current was held constant resulting in a reduction of the drain voltage. The gate plateau voltage for this drain current density was found to be 3.5 V. Once the drain voltage reached the on-state value corresponding to the gate plateau voltage, the gate voltage increased to the steady-state value of 10 V.

The gate charge waveforms obtained by using an input gate current density of 0.17 A/cm² when turning on the power D-MOSFET structure from a blocking state with drain bias of 20 V are shown in Fig. 2.26. The on-state current density is 80 A/cm² at a DC gate bias of 10 V at the end of the turn-on transient. The gate voltage increases at a constant rate at the beginning of the turn-on process as predicted by the analytical model. When the gate voltage reaches the threshold voltage, the drain current begins to increase. The drain current increases as

![Turn-on waveforms for the 30-V power D-MOSFET structure](image)

Fig. 2.26 Turn-on waveforms for the 30-V power D-MOSFET structure
predicted by the analytical model in a quadratic manner until it reaches the on-state current density of 80 A/cm².

Once the drain current reaches the on-state value, the gate voltage remains constant at the plateau voltage (VGP). The plateau voltage for this structure is 3.5 V for the drain current density of 80 A/cm² as governed by the transconductance of the device. The drain voltage decreases during the plateau phase in a non-linear manner. After the end of the plateau phase, the gate voltage again increases until it reaches the gate supply voltage. Although the increase in gate voltage is non-linear at the beginning of this transition it becomes linear over most of the time after the plateau phase. The waveforms obtained using the analytical model (see Fig. 2.25) are very similar in shape and magnitude to those observed in the numerical simulations.

The values for the various components of the gate charge extracted from the numerical simulations are compared with those calculated by using the analytical model in Fig. 2.27. There is very good agreement between these values indicating that the analytical model is a good representation of the physics of turn-on for power D-MOSFET structure.

2.7 Device Figures of Merit

Significant power switching losses can arise from the charging and discharging of the large input capacitance in power MOSFET devices at high frequencies. The input capacitance (CIN) of the power MOSFET structure must be charged to the gate supply voltage (VGS) when turning on the device and then discharged to 0 V when turning off the device during each period of the operating cycle. The total power loss can be obtained by summing the on-state power dissipation for a duty cycle $\delta = t_{ON}/T$ and the switching power losses:

$$
P_T = P_{ON} + P_{SW} = \delta R_{ON}I_{ON}^2 + C_{IN}V_{GSf}^2
$$

\[2.28\]
where R_{ON} is the on-resistance of the power MOSFET structure, I_{ON} is the on-state current, and f is the operating frequency. In writing this equation, the switching power losses due to the drain current and voltage transitions has been neglected. A minimum total power loss occurs for each power MOSFET structure at an optimum active area as shown in the textbook [1]. The on-state and switching power losses are equal at the optimum active area. The optimum active area at which the power dissipation is minimized is given by:

$$A_{\text{OPT}} = \sqrt{\frac{R_{\text{ON,sp}}}{C_{\text{IN,sp}}}} \left(\frac{I_{\text{ON}}}{V_{\text{GS}}} \right) \left(\sqrt{\frac{\delta}{f}} \right)$$

From the first term in this expression, a useful technology figure-of-merit can be defined:

$$FOM(A) = \frac{R_{\text{ON,sp}}}{C_{\text{IN,sp}}}$$

In the power electronics community, there is trend towards increasing the operating frequency for switch mode power supplies in order to reduce the size and weight of the magnetic components. The ability to migrate to higher operating frequencies in power conversion circuits is dependent on making enhancements to the power MOSFET technology. From the above equations, an expression for the minimum total power dissipation can be obtained [1]:

$$P_T(\text{min}) = 2I_{\text{ON}}V_{\text{GS}}\sqrt{\frac{\delta R_{\text{ON,sp}}C_{\text{IN,sp}}}{f}}$$

A second technology figure of merit related to the minimum power dissipation can be defined as:

$$FOM(B) = R_{\text{ON,sp}}C_{\text{IN,sp}}$$

In most applications for power MOSFET structures with high operating frequency, the switching losses associated with the drain current and voltage transitions become a dominant portion of the total power loss. The time period associated with the increase of the drain current and decrease of the drain voltage is determined by the charging of the device capacitances. It is therefore common practice in the industry to use the following figures-of-merit to compare the performance of power MOSFET products [1]:

$$FOM(C) = R_{\text{ON,sp}}Q_{\text{GD,sp}}$$

and

$$FOM(D) = R_{\text{ON,sp}}Q_{\text{SW,sp}}$$
Although FOM(D) encompasses both the drain current and voltage transitions, it is customary to use FOM(C) because the gate-drain charge tends to dominate in the switching gate charge. One advantage of using these expressions is that the figure-of-merit becomes independent of the active area of the power MOSFET device.

The figures of merit computed for the power D-MOSFET structure discussed in earlier sections of this chapter are provided in Fig. 2.28. The figure of merit usually used for comparison of device technologies in the literature is FOM(C). Most often, the value for this figure of merit at a gate bias of 4.5 V is utilized for selection of devices in the voltage regulator module application.

2.8 Discussion

The characteristics of the power D-MOSFET structure has been reviewed in this chapter. This structure has a relatively large specific on-resistance due to its high channel and JFET resistance contributions. Moreover, its reverse transfer charge is relatively large because of the open-junction structure below the gate region than overlaps the drift region. Since the power D-MOSFET structure was developed first from a historical perspective, it will be utilized as a benchmark for assessment of the performance of the improved device structures in subsequent chapters.

For purposes of comparison with the power MOSFET structures discussed in subsequent chapters, the analysis of the power DMOSFET structure is provided here for a broad range of blocking voltages. In this analysis, the power DMOSFET structure was assumed to have the following parameters: (a) N$^+$ source junction depth of 0.5 μm; (b) P-base junction depth of 1.5 μm; (c) P$^+$ region junction depth of 2.5 μm; (d) gate oxide thickness of 500 Å; (e) polysilicon window width of 4 μm; (f) JFET region doping concentration of 2×10^{16}/cm3; (g) threshold voltage of 2 V; (h) gate drive voltage of 10 V; (i) inversion mobility of 450 cm2/V s; (j) accumulation mobility of 1,000 cm2/V s. The contributions from the contacts and the N$^+$ substrate were neglected during the analysis. The doping concentration and thickness of the drift region were determined under the assumption that the edge termination (in conjunction with the graded junction doping profiles) limits the breakdown voltage to 90% of the parallel-plane breakdown voltage. The device parameters pertinent to each blocking voltage are provided in Fig. 2.29. It can be

<table>
<thead>
<tr>
<th>Figures of Merit</th>
<th>$V_G = 4.5$ V</th>
<th>$V_G = 10$ V</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOM(A) (Ω2cm4s$^{-1}$)</td>
<td>64,000</td>
<td>32,000</td>
</tr>
<tr>
<td>FOM(B) (ps)</td>
<td>30.9</td>
<td>15.5</td>
</tr>
<tr>
<td>FOM(C) (mΩ*nC)</td>
<td>303</td>
<td>152</td>
</tr>
<tr>
<td>FOM(D) (mΩ*nC)</td>
<td>333</td>
<td>167</td>
</tr>
</tbody>
</table>

Fig. 2.28 Figures of merit for the power D-MOSFET structure
observed that the doping concentration must be greatly reduced with increasing blocking voltage capability while simultaneously increasing the thickness of the drift region.

The gate electrode width was optimized for each breakdown voltage to achieve the minimum specific on-resistance in the power D-MOSFET structure. The specific on-resistance obtained by using the analytical model for the power DMOSFET structure as a function of the width of the gate electrode is shown in Fig. 2.30 for the case of various breakdown voltages. Note that a logarithmic scale has been used for the vertical axis because of the large range of values for the specific on-resistance. The single zone model (see Fig. 6.39 in the textbook) was used for the 30-V power D-MOSFET structure while the two zone model (see Fig. 6.41 in the textbook) was used for the 60-V and 100-V structures.

<table>
<thead>
<tr>
<th>Blocking Voltage (V)</th>
<th>Drift Doping Concentration (cm⁻³)</th>
<th>Drift Region Thickness (microns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1.6 × 10¹⁶</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>6.0 × 10¹⁵</td>
<td>5</td>
</tr>
<tr>
<td>100</td>
<td>3.0 × 10¹⁵</td>
<td>8</td>
</tr>
<tr>
<td>200</td>
<td>1.2 × 10¹⁵</td>
<td>17</td>
</tr>
<tr>
<td>300</td>
<td>6.8 × 10¹⁴</td>
<td>26</td>
</tr>
<tr>
<td>600</td>
<td>2.7 × 10¹⁴</td>
<td>58</td>
</tr>
<tr>
<td>1000</td>
<td>1.35 × 10¹⁴</td>
<td>105</td>
</tr>
</tbody>
</table>

Fig. 2.29 Device parameters for the power D-MOSFET structures

Fig. 2.30 Optimization of the specific on-resistance for the power D-MOSFET structures
used for the rest of the higher voltage power D-MOSFET structures. From Fig. 2.30, it can be observed that the minimum specific on-resistance occurs at a larger optimum gate electrode width for the power D-MOSFET structures with larger blocking voltages. The optimum gate electrode width and minimum specific on-resistances for the power D-MOSFET structures are provided in Fig. 2.31. These values can be compared with the ideal specific on-resistance obtained by using Baliga’s power law for the impact ionization coefficients in Fig. 2.32. From this figure, it can be concluded that the specific on-resistance for the D-MOSFET structure is always larger than the ideal specific on-resistance. For blocking voltages below 100 V, the specific on-resistance for the power D-MOSFET structure becomes substantially larger than the ideal case.
The specific gate transfer charge for the power D-MOSFET structures was obtained by using the analytical model (see 2.25). During this analysis, the devices were assumed to be operated at an on-state current density that results in a power dissipation of 100 W/cm² as determined by the specific on-resistance for each device. The on-state current density values are provided in Fig. 2.33. The drain supply voltage used for this analysis was chosen to be two-thirds of the breakdown voltage. The drain supply voltage values are also provided in Fig. 2.33.

The specific gate transfer charge values calculated by using the analytical model for the power D-MOSFET structure are given in Fig. 2.33 as a function of the breakdown voltage. These values are also plotted in Fig. 2.34 as a function of the
breakdown voltage. It can be observed that the gate transfer charge increases gradually with increasing breakdown voltage. The specific gate transfer charge increases in a linear fashion on this log-log graph for breakdown voltages ranging from 120 to 1,000 V indicating a power law relationship. The power law relationship that fits the data is shown in the figure by the dashed line. The equation for this line is:

\[Q_{GD} = 2350 \frac{BV}{C_0^{0.575}} \] (2.35)

where the specific gate transfer charge has units of nC/cm².

The figure-of-merit (C) – product of the specific on-resistance and the specific gate transfer charge – for the optimized power D-MODSFET structures was obtained by determining the gate transfer charge for the cell with the optimum gate width for each breakdown voltage using the analytical model (see 2.25). During this analysis, the devices were assumed to be operated at an on-state current density that results in a power dissipation of 100 W/cm² as determined by the specific on-resistance for each device. The resulting values for the FOM(C) are plotted in Fig. 2.35 as a function of the breakdown voltage of the power D-MOSFET structure. It can be observed that the FOM(C) increases in a linear fashion on this log-log graph for breakdown voltages above 200 V indicating a power law relationship. The power law relationship that fits the data is shown in the figure by the dashed line. The equation for this line is:

\[\text{FOM}(C) = R_{ON,sp}Q_{GD,sp} = 0.005423 \frac{BV^{2.394}}{} \] (2.36)

where the FOM(C) has units of mΩ nC.
The values for the specific on-resistance, and FOM(C) provided here for the power D-MOSFET structure are useful as a benchmark to assess the performance of the power MOSFET structures that are discussed in subsequent chapters. Since the power D-MOSFET technology was developed in the 1970s, the manufacturing capability for these devices is mature leading to low device costs. Any advanced power MOSFET devices must provide substantial improvements in the specific on-resistance and FOM(C) in order to displace the power D-MOSFET structures in applications.

References

Advanced Power MOSFET Concepts
Baliga, B.J.
2010, XVI, 562 p., Hardcover
ISBN: 978-1-4419-5916-4