Contents

Series Preface vii

Preface ix

1 Linear Spaces 1
 1.1 Linear spaces ... 1
 1.2 Normed spaces ... 7
 1.2.1 Convergence 10
 1.2.2 Banach spaces 13
 1.2.3 Completion of normed spaces 15
 1.3 Inner product spaces 22
 1.3.1 Hilbert spaces 27
 1.3.2 Orthogonality 28
 1.4 Spaces of continuously differentiable functions 39
 1.4.1 Hölder spaces 41
 1.5 L^p spaces .. 44
 1.6 Compact sets .. 49

2 Linear Operators on Normed Spaces 51
 2.1 Operators .. 52
 2.2 Continuous linear operators 55
 2.2.1 $\mathcal{L}(V, W)$ as a Banach space 59
 2.3 The geometric series theorem and its variants 60
 2.3.1 A generalization 64
2.3.2 A perturbation result .. 66
2.4 Some more results on linear operators 72
 2.4.1 An extension theorem 72
 2.4.2 Open mapping theorem 74
 2.4.3 Principle of uniform boundedness 75
 2.4.4 Convergence of numerical quadratures 76
2.5 Linear functionals ... 79
 2.5.1 An extension theorem for linear functionals 80
 2.5.2 The Riesz representation theorem 82
2.6 Adjoint operators .. 85
2.7 Weak convergence and weak compactness 90
2.8 Compact linear operators 95
 2.8.1 Compact integral operators on $C(D)$ 96
 2.8.2 Properties of compact operators 97
 2.8.3 Integral operators on $L^2(a,b)$ 99
 2.8.4 The Fredholm alternative theorem 101
 2.8.5 Additional results on Fredholm integral equations ... 105
2.9 The resolvent operator 109
 2.9.1 $\mathcal{R}(\lambda)$ as a holomorphic function 110

3 Approximation Theory .. 115
 3.1 Approximation of continuous functions by polynomials 116
 3.2 Interpolation theory 118
 3.2.1 Lagrange polynomial interpolation 120
 3.2.2 Hermite polynomial interpolation 122
 3.2.3 Piecewise polynomial interpolation 124
 3.2.4 Trigonometric interpolation 126
 3.3 Best approximation 131
 3.3.1 Convexity, lower semicontinuity 132
 3.3.2 Some abstract existence results 134
 3.3.3 Existence of best approximation 137
 3.3.4 Uniqueness of best approximation 138
 3.4 Best approximations in inner product spaces, projection on closed convex sets 142
 3.5 Orthogonal polynomials 149
 3.6 Projection operators 154
 3.7 Uniform error bounds 157
 3.7.1 Uniform error bounds for L^2-approximations 160
 3.7.2 L^2-approximations using polynomials 162
 3.7.3 Interpolatory projections and their convergence 164

4 Fourier Analysis and Wavelets 167
 4.1 Fourier series ... 167
 4.2 Fourier transform .. 181
 4.3 Discrete Fourier transform 187
4 Nonlinear Equations and Their Solution by Iteration

5.1 The Banach fixed-point theorem .. 208
5.2 Applications to iterative methods 212
 5.2.1 Nonlinear algebraic equations 213
 5.2.2 Linear algebraic systems 214
 5.2.3 Linear and nonlinear integral equations 216
 5.2.4 Ordinary differential equations in Banach spaces 221
5.3 Differential calculus for nonlinear operators 225
 5.3.1 Fréchet and Gâteaux derivatives 225
 5.3.2 Mean value theorems ... 229
 5.3.3 Partial derivatives .. 230
 5.3.4 The Gâteaux derivative and convex minimization 231
5.4 Newton’s method ... 236
 5.4.1 Newton’s method in Banach spaces 236
 5.4.2 Applications .. 239
5.5 Completely continuous vector fields 241
 5.5.1 The rotation of a completely continuous vector field .. 243
5.6 Conjugate gradient method for operator equations 245

6 Finite Difference Method

6.1 Finite difference approximations 253
6.2 Lax equivalence theorem .. 260
6.3 More on convergence .. 269

7 Sobolev Spaces

7.1 Weak derivatives ... 277
7.2 Sobolev spaces .. 283
 7.2.1 Sobolev spaces of integer order 284
 7.2.2 Sobolev spaces of real order 290
 7.2.3 Sobolev spaces over boundaries 292
7.3 Properties ... 293
 7.3.1 Approximation by smooth functions 293
 7.3.2 Extensions .. 294
 7.3.3 Sobolev embedding theorems 295
 7.3.4 Traces ... 297
 7.3.5 Equivalent norms ... 298
 7.3.6 A Sobolev quotient space 302
7.4 Characterization of Sobolev spaces via the Fourier transform 308
7.5 Periodic Sobolev spaces ... 311
 7.5.1 The dual space ... 314
 7.5.2 Embedding results .. 315
 7.5.3 Approximation results 316
8 Weak Formulations of Elliptic Boundary Value Problems 327
 8.1 A model boundary value problem 328
 8.2 Some general results on existence and uniqueness 330
 8.3 The Lax-Milgram Lemma 334
 8.4 Weak formulations of linear elliptic boundary value problems 338
 8.4.1 Problems with homogeneous Dirichlet boundary conditions 338
 8.4.2 Problems with non-homogeneous Dirichlet boundary conditions 339
 8.4.3 Problems with Neumann boundary conditions 341
 8.4.4 Problems with mixed boundary conditions 343
 8.4.5 A general linear second-order elliptic boundary value problem 344
 8.5 A boundary value problem of linearized elasticity 348
 8.6 Mixed and dual formulations 354
 8.7 Generalized Lax-Milgram Lemma 359
 8.8 A nonlinear problem 361

9 The Galerkin Method and Its Variants 367
 9.1 The Galerkin method 367
 9.2 The Petrov-Galerkin method 374
 9.3 Generalized Galerkin method 376
 9.4 Conjugate gradient method: variational formulation 378

10 Finite Element Analysis 383
 10.1 One-dimensional examples 384
 10.1.1 Linear elements for a second-order problem 384
 10.1.2 High order elements and the condensation technique 389
 10.1.3 Reference element technique 390
 10.2 Basics of the finite element method 393
 10.2.1 Continuous linear elements 394
 10.2.2 Affine-equivalent finite elements 400
 10.2.3 Finite element spaces 404
 10.3 Error estimates of finite element interpolations 406
 10.3.1 Local interpolations 407
 10.3.2 Interpolation error estimates on the reference element 408
 10.3.3 Local interpolation error estimates 409
 10.3.4 Global interpolation error estimates 412
 10.4 Convergence and error estimates 415
<table>
<thead>
<tr>
<th>Chapter 11: Elliptic Variational Inequalities and Their Numerical Approximations</th>
<th>423</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 From variational equations to variational inequalities</td>
<td>423</td>
</tr>
<tr>
<td>11.2 Existence and uniqueness based on convex minimization</td>
<td>428</td>
</tr>
<tr>
<td>11.3 Existence and uniqueness results for a family of EVIs</td>
<td>430</td>
</tr>
<tr>
<td>11.4 Numerical approximations</td>
<td>442</td>
</tr>
<tr>
<td>11.5 Some contact problems in elasticity</td>
<td>458</td>
</tr>
<tr>
<td>11.5.1 A frictional contact problem</td>
<td>460</td>
</tr>
<tr>
<td>11.5.2 A Signorini frictionless contact problem</td>
<td>465</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 12: Numerical Solution of Fredholm Integral Equations of the Second Kind</th>
<th>473</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Projection methods: General theory</td>
<td>474</td>
</tr>
<tr>
<td>12.1.1 Collocation methods</td>
<td>474</td>
</tr>
<tr>
<td>12.1.2 Galerkin methods</td>
<td>476</td>
</tr>
<tr>
<td>12.1.3 A general theoretical framework</td>
<td>477</td>
</tr>
<tr>
<td>12.2 Examples</td>
<td>483</td>
</tr>
<tr>
<td>12.2.1 Piecewise linear collocation</td>
<td>483</td>
</tr>
<tr>
<td>12.2.2 Trigonometric polynomial collocation</td>
<td>486</td>
</tr>
<tr>
<td>12.2.3 A piecewise linear Galerkin method</td>
<td>488</td>
</tr>
<tr>
<td>12.2.4 A Galerkin method with trigonometric polynomials</td>
<td>490</td>
</tr>
<tr>
<td>12.3 Iterated projection methods</td>
<td>494</td>
</tr>
<tr>
<td>12.3.1 The iterated Galerkin method</td>
<td>497</td>
</tr>
<tr>
<td>12.3.2 The iterated collocation solution</td>
<td>498</td>
</tr>
<tr>
<td>12.4 The Nyström method</td>
<td>504</td>
</tr>
<tr>
<td>12.4.1 The Nyström method for continuous kernel functions</td>
<td>505</td>
</tr>
<tr>
<td>12.4.2 Properties and error analysis of the Nyström method</td>
<td>507</td>
</tr>
<tr>
<td>12.4.3 Collectively compact operator approximations</td>
<td>516</td>
</tr>
<tr>
<td>12.5 Product integration</td>
<td>518</td>
</tr>
<tr>
<td>12.5.1 Error analysis</td>
<td>520</td>
</tr>
<tr>
<td>12.5.2 Generalizations to other kernel functions</td>
<td>523</td>
</tr>
<tr>
<td>12.5.3 Improved error results for special kernels</td>
<td>525</td>
</tr>
<tr>
<td>12.5.4 Product integration with graded meshes</td>
<td>525</td>
</tr>
<tr>
<td>12.5.5 The relationship of product integration and collocation methods</td>
<td>529</td>
</tr>
<tr>
<td>12.6 Iteration methods</td>
<td>531</td>
</tr>
<tr>
<td>12.6.1 A two-grid iteration method for the Nyström method</td>
<td>532</td>
</tr>
<tr>
<td>12.6.2 Convergence analysis</td>
<td>535</td>
</tr>
<tr>
<td>12.6.3 The iteration method for the linear system</td>
<td>538</td>
</tr>
<tr>
<td>12.6.4 An operations count</td>
<td>540</td>
</tr>
<tr>
<td>12.7 Projection methods for nonlinear equations</td>
<td>542</td>
</tr>
<tr>
<td>12.7.1 Linearization</td>
<td>542</td>
</tr>
<tr>
<td>12.7.2 A homotopy argument</td>
<td>545</td>
</tr>
<tr>
<td>12.7.3 The approximating finite-dimensional problem</td>
<td>547</td>
</tr>
</tbody>
</table>
13 Boundary Integral Equations
13.1 Boundary integral equations
 13.1.1 Green’s identities and representation formula
 13.1.2 The Kelvin transformation and exterior problems
 13.1.3 Boundary integral equations of direct type
13.2 Boundary integral equations of the second kind
 13.2.1 Evaluation of the double layer potential
 13.2.2 The exterior Neumann problem
13.3 A boundary integral equation of the first kind
 13.3.1 A numerical method

14 Multivariable Polynomial Approximations
14.1 Notation and best approximation results
14.2 Orthogonal polynomials
 14.2.1 Triple recursion relation
 14.2.2 The orthogonal projection operator and its error
14.3 Hyperinterpolation
 14.3.1 The norm of the hyperinterpolation operator
14.4 A Galerkin method for elliptic equations
 14.4.1 The Galerkin method and its convergence

References

Index
Theoretical Numerical Analysis
A Functional Analysis Framework
Atkinson, K.; Han, W.
2009, XVI, 625 p., Hardcover
ISBN: 978-1-4419-0457-7