Contents

1 Introduction ... 1
1.1 Problems in Integration of Analog Filters 2
1.2 Filter Design Approaches 4
 1.2.1 LC Filters 4
 1.2.2 Active RC Filters 5
 1.2.3 Active R and Partially Active R Filters 6
 1.2.4 SC Filters 6
 1.2.5 OTA-C (Gm-C) Filters 8
 1.2.6 MOSFET-C Filters 8
 1.2.7 Log-Domain Filters 9
 1.2.8 Current-Mode Filters 10
References ... 10

2 Active RC Filters Using Opamps 13
 2.1 Amplifiers Using Opamps 13
 2.2 Integrators Using Opamps 21
 2.3 First-Order Filters Using Opamps 27
 2.3.1 Low-Pass Filters 27
 2.3.2 First-Order All-Pass Filters 29
 2.4 Sallen–Key Active RC Low-Pass Filter 29
 2.4.1 Effect of Finite Gain of the Opamp 32
 2.4.2 Effect of Finite Bandwidth of the Opamp 33
 2.4.3 Active Compensation of Sallen–Key Filter
 with \(K = 1 \) 35
 2.4.4 Sensitivity Analysis 36
 2.5 Second-Order Filters Based on Multiple Feedback ... 42
 2.5.1 Friend’s Biquad 42
 2.5.2 Multiple Feedback-Type Low-Pass Filter
 Due to Friend 46
 2.5.3 Active Filters Using Single Fully
 Differential Amplifier 53

xiii
2.6 Biquads Using Two Opamps ... 55
 2.6.1 GIC-Based Biquads ... 55
 2.6.2 Two-Amplifier Biquads Derived from
 Single-Amplifier Biquads .. 58
2.7 Biquads Using More Than Two Opamps 60
 2.7.1 KHN Biquad .. 60
 2.7.2 Tow–Thomas Biquad ... 63
 2.7.3 Akerberg–Mossberg Biquad 66
 2.7.4 Scaling for Optimal Dynamic Range 67
 2.7.5 Variants of Tow–Thomas and KHN Biquads 68
 2.7.6 Tarmy–Ghausi–Moschytz Three Opamp
 Biquad and Its Variations ... 74
2.8 Second-Order Active Filters Using Amplifier
 Pole and One Capacitor ... 76
 2.8.1 Using Single Capacitor .. 76
 2.8.2 Second-Order Filters Using Only Resistors
 and Amplifier Poles .. 81
2.9 Active Filters Based on RLC Ladder Filters 88
 2.9.1 Component Simulation Technique 89
 2.9.2 FDNR-Based Filters ... 92
 2.9.3 Active RC Ladder Filters Based
 on Operational Simulation ... 93
 2.9.4 Operational Simulation of High-Pass Filters:
 Yoshihoro’s Technique .. 100
 2.9.5 Operational Simulation of General-Parameter
 Ladder Filters .. 104
2.10 Multiloop Feedback-Based Active RC Filters 106
 2.10.1 FLF (Follow-the-Leader Feedback) 106
 2.10.2 PRB (Primary Resonator Block) Structure 109
 2.10.3 SCF (Shifted Companion Form) Structure 109
 2.10.4 Multiloop Feedback (MLF) Structure 110
 2.10.5 IFLF (Inverse Follow-the-Leader
 Feedback) Structure .. 110
 2.10.6 MSF (Minimum Sensitivity Feedback)
 Structure ... 110
2.11 Noise in Active RC Filters .. 112
2.12 Distortion in Active RC Filters 122
2.13 Problems .. 126
References ... 142

3 OTA-C Filters ... 147
 3.1 OTA-C Integrators ... 148
 3.2 First-Order OTA-C Filters .. 150
 3.2.1 First-Order OTA-C Filters Using OTAs
 with Single-Current Output .. 150
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2</td>
<td>First-Order Filters Using OTAs with Current Input and Current Output</td>
<td>152</td>
</tr>
<tr>
<td>3.3</td>
<td>Voltage-Mode Second-Order OTA-C Filters</td>
<td>154</td>
</tr>
<tr>
<td>3.4</td>
<td>Current-Mode Second-Order OTA-C Filters</td>
<td>166</td>
</tr>
<tr>
<td>3.5</td>
<td>OTA-C Filters Using First-Order All-Pass Sections</td>
<td>189</td>
</tr>
<tr>
<td>3.5.1</td>
<td>OTA-C Filters Derived from Tarmy–Ghausi Active RC Filter</td>
<td>189</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Second-Order All-Pass OTA-C Filter Realization Derived from Mitra–Hirano and Gray–Markel Structures</td>
<td>195</td>
</tr>
<tr>
<td>3.6</td>
<td>High-Order OTA-C Filters</td>
<td>197</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Inductance Simulation Using OTAs</td>
<td>197</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Voltage-Mode OTA-C Filters Derived from RLC Ladder Filters Using Component Simulation</td>
<td>198</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Table-Based Linear Transformation Type OTA-C Filters Based on Ladder Filters</td>
<td>202</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Current-Mode OTA-C Filters Based on RLC Ladder Filters</td>
<td>209</td>
</tr>
<tr>
<td>3.7</td>
<td>Multiple-Feedback-Type OTA-C Filters</td>
<td>216</td>
</tr>
<tr>
<td>3.8</td>
<td>Analytical Synthesis-Based OTA-C Filters</td>
<td>219</td>
</tr>
<tr>
<td>3.9</td>
<td>Effect of OTA Nonidealities</td>
<td>223</td>
</tr>
<tr>
<td>3.10</td>
<td>OTA-C Oscillators</td>
<td>227</td>
</tr>
<tr>
<td>3.11</td>
<td>Derivation of Voltage-Mode OTA-C Filters from Active RC Filters and Current-Mode OTA-C Filters from Voltage-Mode OTA-C Filters</td>
<td>232</td>
</tr>
<tr>
<td>3.12</td>
<td>Distortion in OTA-C Filters</td>
<td>235</td>
</tr>
<tr>
<td>3.13</td>
<td>Noise Analysis of OTA-C Biquads</td>
<td>239</td>
</tr>
<tr>
<td>3.14</td>
<td>Problems</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>246</td>
</tr>
</tbody>
</table>

4 Switched Capacitor Filters

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Basic Concept of Switched-Capacitor Resistor</td>
<td>251</td>
</tr>
<tr>
<td>4.2</td>
<td>Analysis of SC Filters</td>
<td>254</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Laker’s z-Domain Equivalent Circuit Method</td>
<td>254</td>
</tr>
<tr>
<td>4.3</td>
<td>First-Order SC Circuits</td>
<td>257</td>
</tr>
<tr>
<td>4.4</td>
<td>Stray-Insensitive SC Biquads</td>
<td>262</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Fliescher–Laker SC Biquad</td>
<td>262</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Design Procedure</td>
<td>264</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Capacitor Spread Evaluation</td>
<td>265</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Sensitivity Evaluation</td>
<td>267</td>
</tr>
<tr>
<td>4.5</td>
<td>Multiplexed Single-Amplifier SC Filters</td>
<td>268</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Parasitic Compensated SC Biquads</td>
<td>268</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Multiplexed Single Opamp High-Order SC Filters</td>
<td>270</td>
</tr>
</tbody>
</table>
4.6 Improved SC Biquads ... 272
 4.6.1 Multiplexing of Capacitors 272
 4.6.2 Split-Integrating Capacitor Technique 273
 4.6.3 Nagaraj’s SC Filters with Low Capacitor Spread . 276
 4.6.4 T-Cell Integrator-Based Biquads 278
4.7 Optimal Design of SC Biquads 279
4.8 SC Ladder Filters Based on Component Simulation and Operational Simulation 287
 4.8.1 SC Realization of L, C, and R Elements 288
 4.8.2 SC Low-Pass and Band-Pass Filters Derived Using Operational Simulation of LC Ladder Filters .. 291
 4.8.3 SC High-Pass Filters Derived Using Operational Simulation of LC Ladder Filters 296
4.9 High-Frequency SC Filters 298
 4.9.1 SC Filters Using Double Sampling Scheme 302
 4.9.2 SC Filters Based on POG (Precise Opamp Gain) 304
 4.9.3 SC N-Path Filters 306
4.10 High-Frequency SC Ladder Filters 325
4.11 SC FIR Filters ... 331
4.12 Compensation of Finite Gain and Offset Voltage of SC Integrators and Amplifiers 337
 4.12.1 Offset and Finite Gain Compensation in Integrators .. 337
 4.12.2 Compensation of Opamp Offset and Finite Gain in SC Amplifiers 342
4.13 Distortion in SC Filters 346
4.14 Low-Voltage SC Filter Design Techniques 349
 4.14.1 Switched-Opamp Technique-Based SC Filters 351
 4.14.2 Clock Boosting Technique 355
 4.14.3 Local Switch Bootstrapping 355
 4.14.4 Reset-Opamp Technique 359
 4.14.5 BIOC (Biased Inverting Opamp Configuration) Based SC Filters .. 360
4.15 Noise in SC Filters ... 365
4.16 Effect of Finite Bandwidth of Opamp on the Performance of SC Filters 374
 4.16.1 Effect of Opamp Bandwidth on SC Filters Using Opamps .. 374
 4.16.2 Effect of Opamp Bandwidth on SC Filters Using OTAs .. 378
4.17 Charge Injection in MOS Switches 381
5 Practical Designs of VLSI Analog Filters

5.1 Integrated Resistors and Capacitors

5.2 Active RC Filter Designs for Wireless Applications

5.3 Active RC Filters for ADSL

5.4 Active RC Filters for Software Radio

5.5 Active RC Filters for Other Applications

5.6 Gm-C Filters for Wireless Applications

5.7 Gm-C Filters for Optical Receivers

5.8 Gm-C Filters for Software Radio

5.9 Gm-C Filters for EEG Application

5.10 Gm-C Filters for HDD

5.11 Gm-C Filters for Power Supply Applications

5.12 Gm-C Filters for Other Applications

5.13 Gm-C Filter Tuning Techniques

5.14 SC Filters Using Comparators

5.15 Sigma-Delta Modulators

5.16 LC Filters

5.17 Evaluation of CT Filters

5.18 Problems

References

Appendix A

Appendix B

Index
VLSI Analog Filters
Active RC, OTA-C, and SC
Mohan, P.V.A.
2013, XV, 618 p. 451 illus., 37 illus. in color., Hardcover
ISBN: 978-0-8176-8357-3
A product of Birkhäuser Basel