Contents

Chapter 1
Hyperbolic Structures 1
1.1 The Hyperbolic Plane 1
1.2 Hyperbolic Structures 5
1.3 Pasting 8
1.4 The Universal Covering 15
1.5 Perpendiculars 17
1.6 Closed Geodesics 21
1.7 The Fenchel-Nielsen Parameters 27

Chapter 2
Trigonometry 31
2.1 The Hyperboloid Model 31
2.2 Triangles 33
2.3 Trirectangles and Pentagons 37
2.4 Hexagons 40
2.5 Variable Curvature 43
2.6 Appendix: The Hyperboloid Model Revisited 49
 The Quaternion Model 49
 A Trace Relation 55
 The General Sine and Cosine Formula 57

Chapter 3
Y-Pieces and Twist Parameters 63
3.1 Y-Pieces 63
3.2 Marked Y-Pieces 67
3.3 Twist Parameters 69
3.4 Signature (1, 1) 76
3.5 Cubic Graphs 78
3.6 The Compact Riemann Surfaces 81
3.7 Appendix: The Length Spectrum Is of Unbounded Multiplicity
 Geometric Approach 84
 Algebraic Approach 85

Chapter 4
The Collar Theorem
4.1 Collars 94
4.2 Non-Simple Closed Geodesics 98
4.3 Variable Curvature 104
4.4 Cusps 108
4.5 Triangulations of Controlled Size 116

Chapter 5
Bers' Constant and the Hairy Torus 122
5.1 Bers' Theorem 123
5.2 Partitions 124
5.3 The Hairy Torus 130
5.4 Bers' Constant Without Curvature Bounds 133

Chapter 6
The Teichmüller Space 138
6.1 Marked Riemann Surfaces 138
6.2 Models of Teichmüller Space 142
6.3 The Real Analytic Structure of \(\mathcal{T}_g \) 147
6.4 Distances in \(\mathcal{T}_g \) 152
6.5 The Teichmüller Modular Group 154
6.6 A Rough Fundamental Domain 160
6.7 The Coordinates of Zieschang-Vogt-Coldewey 164
6.8 Fuchsian Groups and Bers' Coordinates 170

Chapter 7
The Spectrum of the Laplacian 182
7.1 Introduction 182
7.2 The Spectrum and the Heat Equation 184
7.3 The Abel Transform 194
7.4 The Heat Kernel of the Hyperbolic Plane 197
7.5 The Heat Kernel of \(\Gamma \backslash H \) 205

Chapter 8
Small Eigenvalues 210
8.1 The Interval \([0, \frac{1}{4}] \) 210
8.2 The Minimax Principles 213
8.3 Cheeger's Inequality 215
8.4 Eigenvalue Estimates 218
Chapter 9
Closed Geodesics and Huber's Theorem 224

9.1 The Origin of the Length Spectrum 225
9.2 Summation over the Lengths 227
9.3 Summation over the Eigenvalues 235
9.4 The Prime Number Theorem 241
9.5 Selberg's Trace Formula 252
9.6 The Prime Number Theorem with Error Terms 256
9.7 Lattice Points 261

Chapter 10
Wolpert's Theorem 268

10.1 Introduction 268
10.2 Curve Systems 270
10.3 Finitely Many Lengths Determine the Length Spectrum 273
10.4 Generic Surfaces Are Determined by Their Spectrum 275
10.5 Decoding the Moduli 278

Chapter 11
Sunada's Theorem 283

11.1 Some History 283
11.2 Examples of Almost Conjugate Groups 285
11.3 Proof of Sunada's Theorem 291
11.4 Cayley Graphs 296
11.5 Transplantation of Eigenfunctions 304
11.6 Transplantation of Closed Geodesics 307

Chapter 12
Examples of Isospectral Riemann Surfaces 311

12.1 Cayley Graphs and Hyperbolic Polygons 311
12.2 Smoothness 313
12.3 Examples over $\mathbb{Z}_q \rtimes \mathbb{Z}_q$ 318
12.4 Examples over $\text{SL}(3, 2)$ 321
12.5 Genus 6 325
12.6 Large Families 332
12.7 Criteria For Non-Isometry 333

Chapter 13
The Size of Isospectral Families 340

13.1 Finiteness 340
13.2 Parameter Geodesics of Length $> \exp(-4g)$ 344
13.3 Measuring the Twist Parameters 347
13.4 Parameter Geodesics of Length $\leq \exp(-4g)$ 355
Contents

Chapter 14
Perturbations of the Laplacian in Hilbert Space

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>The Hilbert Spaces H_0 and H_1</td>
<td>362</td>
</tr>
<tr>
<td>14.2</td>
<td>The Friedrichs Extension of the Laplacian</td>
<td>366</td>
</tr>
<tr>
<td>14.3</td>
<td>A Representation Theorem</td>
<td>370</td>
</tr>
<tr>
<td>14.4</td>
<td>Resolvents and Projectors</td>
<td>373</td>
</tr>
<tr>
<td>14.5</td>
<td>Holomorphic Families</td>
<td>380</td>
</tr>
<tr>
<td>14.6</td>
<td>A Model of Teichmüller Space</td>
<td>382</td>
</tr>
<tr>
<td>14.7</td>
<td>Reduction to Finite Dimension</td>
<td>388</td>
</tr>
<tr>
<td>14.8</td>
<td>Holomorphic Families of Laplacians</td>
<td>397</td>
</tr>
<tr>
<td>14.9</td>
<td>Analytic Properties of the Eigenvalues</td>
<td>399</td>
</tr>
<tr>
<td>14.10</td>
<td>Finite Parts of the Spectrum</td>
<td>406</td>
</tr>
</tbody>
</table>

Appendix
Curves and Isotopies

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The Theorems of Baer-Epstein-Zieschang</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>An Application to the 3-Holed Sphere</td>
<td>424</td>
</tr>
<tr>
<td></td>
<td>Length-Decreasing Homotopies</td>
<td>428</td>
</tr>
</tbody>
</table>

Bibliography 433

Index 448

Glossary 454
http://www.springer.com/978-0-8176-4991-3

Geometry and Spectra of Compact Riemann Surfaces
Buser, P.
2010, XIV, 456 p. 145 illus., Softcover
ISBN: 978-0-8176-4991-3
A product of Birkhäuser Basel