Contents

Preface ix

1 Nonlinear Elasticity 1
 1.1 Preliminary Considerations 1
 1.2 The Equilibrium Problem 2
 1.3 Remarks About Equilibrium Boundary Problems 4
 1.4 Variational Formulation of Equilibrium 7
 1.5 Isotropic Elastic Materials 11
 1.6 Homogeneous Deformations 12
 1.7 Homothetic Deformation 13
 1.8 Simple Extension of a Rectangular Block 16
 1.9 Simple Shear of a Rectangular Block 18
 1.10 Universal Static Solutions 21
 1.11 Constitutive Equations in Nonlinear Elasticity 24
 1.12 Treolar’s Experiments 25
 1.13 Rivlin and Saunders’ Experiment 26
 1.14 Nondimensional Analysis of Equilibrium 28
 1.15 Signorini’s Perturbation Method for Mixed Problems 29
 1.16 Signorini’s Method for Traction Problems 31
 1.17 Loads with an Equilibrium Axis 34
 1.18 Second-Order Hyperelasticity 36
 1.19 A Simple Application of Signorini’s Method 38
 1.20 Van Buren’s Theorem 40
 1.21 An Extension of Signorini’s Method to Live Loads 45
 1.22 Second-Order Singular Surfaces 47
 1.23 Singular Waves in Nonlinear Elasticity 51
 1.24 Principal Waves in Isotropic Compressible Elastic Materials 53
 1.25 A Perturbation Method for Waves in Compressible Media 56
 1.26 A Perturbation Method for Analyzing Ordinary Waves in Incompressible Media 60
2 Micropolar Elasticity 67
 2.1 Preliminary Considerations 67
 2.2 Kinematics of a Micropolar Continuum 68
 2.3 Mechanical Balance Equations 73
 2.4 Energy and Entropy 76
 2.5 Elastic Micropolar Systems 78
 2.6 The Objectivity Principle 81
 2.7 Some Remarks on Boundary Value Problems 86
 2.8 Asymmetric Elasticity 87

3 Continuous System with a Nonmaterial Interface 91
 3.1 Introduction 91
 3.2 Velocity of a Moving Surface 92
 3.3 Velocity of a Moving Curve 94
 3.4 Thomas’ Derivative and Other Formulae 95
 3.5 Differentiation Formulae 96
 3.6 Balance Laws 101
 3.7 Entropy Inequality and Gibbs Potential 106
 3.8 Other Balance Equations 109
 3.9 Integral Form of Maxwell’s Equations 111

4 Phase Equilibrium 113
 4.1 Boundary Value Problems in Phase Equilibrium ... 113
 4.2 Some Phenomenological Results of Changes in State ... 114
 4.3 Equilibrium of Fluid Phases with a Planar Interface ... 117
 4.4 Equilibrium of Fluid Phases with a Spherical Interface ... 119
 4.5 Variational Formulation of Phase Equilibrium 122
 4.6 Phase Equilibrium in Crystals 125
 4.7 Wulff’s Construction 130

5 Stationary and Time-Dependent Phase Changes 133
 5.1 The Problem of Continuous Casting 133
 5.2 On the Evolution of the Solid–Liquid Phase Change ... 138
 5.3 On the Evolution of the Liquid–Vapor Phase Change ... 142
 5.4 The Case of a Perfect Gas 146

6 An Introduction to Mixture Theory 149
 6.1 Balance Laws 150
 6.2 Classical Mixtures 155
 6.3 Nonclassical Mixtures 159
 6.4 Balance Equations of Binary Fluid Mixtures 161
 6.5 Constitutive Equations 163
 6.6 Phase Equilibrium and Gibbs’ Principle 167
 6.7 Evaporation of a Fluid into a Gas 168
7 Electromagnetism in Matter
7.1 Integral Balance Laws 171
7.2 Electromagnetic Fields in Rigid Bodies at Rest 174
7.3 Constitutive Equations for Isotropic Rigid Bodies 178
7.4 Approximate Constitutive Equations for Isotropic Bodies . 180
7.5 Maxwell’s Equations and the Principle of Relativity 181
7.6 Quasi-electrostatic and Quasi-magnetostatic
 Approximations ... 185
7.7 Balance Equations for Quasi-electrostatics 189
7.8 Isotropic and Anisotropic Constitutive Equations 192
7.9 Polarization Fields and the Equations of Quasi-electrostatics 194
7.10 More General Constitutive Equations 197
7.11 Lagrangian Formulation of Quasi-electrostatics 198
7.12 Variational Formulation for Equilibrium in Quasi-
 electrostatics ... 201

8 Introduction to Magnetofluid Dynamics
8.1 An Evolution Equation for the Magnetic Field 205
8.2 Balance Equations in Magnetofluid Dynamics 207
8.3 Equivalent Form of the Balance Equations 208
8.4 Constitutive Equations 211
8.5 Ordinary Waves in Magnetofluid Dynamics 212
8.6 Alfven’s Theorems ... 216
8.7 Laminar Motion Between Two Parallel Plates 217
8.8 Law of Isorotation .. 222

9 Continua with an Interface and Micromagnetism
9.1 Ferromagnetism and Micromagnetism 225
9.2 A Ferromagnetic Crystal as a Continuum with an Interface 227
9.3 Variations in Surfaces of Discontinuity 228
9.4 Variational Formulation of Weiss Domains 229
9.5 Weiss Domain Structure 231
9.6 Weiss Domains in the Absence of a Magnetic Field 234
9.7 Weiss Domains in Uniaxial Crystals 236
9.8 A Variational Principle for Elastic Ferromagnetic Crystals 239
9.9 Weiss Domains in Elastic Uniaxial Crystals 241
9.10 A Possible Weiss Domain Distribution in Elastic Uniaxial
 Crystals .. 243
9.11 A More General Variational Principle 244
9.12 Weiss Domain Branching 250
9.13 Weiss Domains in an Applied Magnetic Field 252
Contents

10 Relativistic Continuous Systems 257
10.1 Lorentz Transformations 257
10.2 The Principle of Relativity 261
10.3 Minkowski Spacetime .. 264
10.4 Physical Meaning of Minkowski Spacetime 268
10.5 Four-Dimensional Equation of Motion 270
10.6 Integral Balance Laws 272
10.7 The Momentum–Energy Tensor 274
10.8 Fermi and Fermi–Walker Transport 277
10.9 The Space Projector .. 281
10.10 Intrinsic Deformation Gradient 283
10.11 Relativistic Dissipation Inequality 286
10.12 Thermoelastic Materials in Relativity 289
10.13 About the Physical Meanings of Relative Quantities ... 293
10.14 Maxwell’s Equation in Matter 295
10.15 Minkowski’s Description 297
10.16 Amperé’s Model ... 298

A Brief Introduction to Weak Solutions 301
A.1 Weak Derivative and Sobolev Spaces 301
A.2 A Weak Solution of a PDE 305
A.3 The Lax–Milgram Theorem 307

B Elements of Surface Geometry 309
B.1 Regular Surfaces ... 309
B.2 The Second Fundamental Form 311
B.3 Surface Gradient and the Gauss Theorem 316

C First-Order PDE 319
C.1 Monge’s Cone ... 319
C.2 Characteristic Strips ... 321
C.3 Cauchy’s Problem ... 324

D The Tensor Character of Some Physical Quantities 327

References 331

Index 345