Contents

Preface ... VII

Part I The locus of a perturbed relay system theory

1 The servo problem in discontinuous control systems 3
 1.1 Introduction .. 3
 1.2 Fundamentals of frequency-domain analysis of periodic
 motions in nonlinear systems 5
 1.3 Relay servo systems 10
 1.4 Symmetric oscillations in relay servo systems: DF analysis 12
 1.5 Asymmetric oscillations in relay servo systems: DF analysis . . . 14
 1.6 Slow signal propagation through a relay servo system 16
 1.7 Conclusions ... 17

2 The locus of a perturbed relay system (LPRS) theory 19
 2.1 Introduction to the LPRS 19
 2.2 Computing the LPRS for a non-integrating plant 21
 2.2.1 Matrix state-space description approach 21
 2.2.2 Partial fraction expansion technique 23
 2.2.3 Transfer function description approach 24
 2.2.4 Orbital stability of relay systems 26
 2.3 Computing the LPRS for an integrating plant 26
 2.3.1 Matrix state-space description approach 26
 2.3.2 Transfer function description approach 29
 2.3.3 Orbital stability of relay systems 30
 2.4 Computing the LPRS for a plant with a time delay 31
 2.4.1 Matrix state-space description approach 31
 2.4.2 Orbital asymptotic stability 32
 2.5 LPRS of first-order dynamics 33
 2.6 LPRS of second-order dynamics 35
Contents

2.7 LPRS of first-order plus dead-time dynamics 38
2.8 Some properties of the LPRS 41
2.9 LPRS of nonlinear plants 43
 2.9.1 Additivity property 43
 2.9.2 The LPRS extended definition and open-loop LPRS computing ... 46
2.10 Application of periodic signal mapping to computing
 the LPRS of some special nonlinear plants 48
2.11 Comparison of the LPRS with other methods of analysis
 of relay systems ... 52
2.12 An example of analysis of oscillations and transfer properties 53
2.13 Conclusions .. 54

3 Input-output analysis of relay servo systems 57
 3.1 Slow and fast signal propagation through a relay
 servo system ... 57
 3.2 Methodology of input-output analysis 63
 3.3 Example of forced motions analysis with the use of the LPRS .. 63
 3.4 Conclusions .. 65

4 Analysis of sliding modes in the frequency domain 67
 4.1 Introduction to sliding mode control 67
 4.2 Representation of a sliding mode system via the equivalent
 relay system .. 69
 4.3 Analysis of motions in the equivalent relay system 73
 4.4 The chattering phenomenon and its LPRS analysis 77
 4.5 Reduced-order and non-reduced-order models of averaged
 motions in a sliding mode system and input-output analysis 85
 4.6 On fractal dynamics in sliding-mode control 88
 4.7 Examples of chattering and disturbance attenuation analysis 95
 4.8 Conclusions .. 101

5 Performance analysis of second-order SM
 control algorithms ... 103
 5.1 Introduction ... 103
 5.2 Sub-optimal algorithm 104
 5.3 Describing function analysis of chattering 105
 5.4 Exact frequency-domain analysis of chattering 106
 5.5 Describing function analysis of external signal propagation 108
 5.6 Exact frequency-domain analysis of external signal
 propagation .. 112
 5.7 Example of the analysis of sub-optimal algorithm
 performance ... 117
 5.8 Conclusions .. 122
Part II Applications of the locus of a perturbed relay system

6 Relay pneumatic servomechanism design 125
 6.1 Relay pneumatic servomechanism dynamics and characteristics .. 125
 6.2 LPRS analysis of uncompensated relay electro-pneumatic servomechanism 127
 6.3 Compensator design in the relay electro-pneumatic servomechanism 128
 6.4 Examples of compensator design in the relay electro-pneumatic servomechanism 132
 6.5 Compensator design in the relay electro-pneumatic servomechanism with the use of the LPRS of a nonlinear plant .. 135
 6.6 Conclusions ... 138

7 Relay feedback test identification and autotuning 139
 7.1 The relay feedback test ... 139
 7.2 The LPRS and asymmetric relay feedback test 140
 7.3 Methodology of identification of the first-order plus dead-time process 141
 7.4 Analysis of potential sources of inaccuracy 143
 7.5 Performance analysis of the identification algorithm 145
 7.6 Tuning algorithm ... 147
 7.7 Conclusions ... 151

8 Performance analysis of the sliding mode–based analog differentiator and dynamical compensator 153
 8.1 Transfer function “inversion” via sliding mode 153
 8.2 Analysis of SM differentiator dynamics 154
 8.3 Temperature sensor dynamics compensation via SM application .. 157
 8.4 Analysis of the sliding mode compensator 160
 8.5 An example of compensator design 162
 8.6 Conclusions ... 165

9 Analysis of sliding mode observers 167
 9.1 The SM observer as a relay servo system 167
 9.2 SM observer performance analysis and characteristics 170
 9.3 Example of SM observer performance analysis 172
 9.4 Conclusions ... 175
Discontinuous Control Systems
Frequency-Domain Analysis and Design
Boiko, I.
2009, XIV, 212 p., Hardcover
ISBN: 978-0-8176-4752-0
A product of Birkhäuser Basel