Contents

Preface ... vii
Acknowledgments .. ix

Chapter 1 An Overview of This Manual 1
 Introduction ... 1
 Kits, Cores, and Computers ... 3
 How to Use This Book ... 3
 Basic Laboratory Equipment ... 4
 Laboratory Automation ... 5
 Beyond Protein Analysis and Purification 6

Chapter 2 Protein Structure 8
 Introduction ... 8
 A. The Amino Acids .. 8
 B. The Four Levels of Protein Structure 11
 Primary Structure .. 11
 Secondary Structure .. 13
 Tertiary Structure ... 16
 Quaternary Structure ... 17
 C. Chemical Characteristics of Proteins 17
 Hydrophobicity .. 19
 Consensus Sequences ... 19
 Proteomics ... 21

⚠️ Protocol uses radioactive substances. Make sure that all institutional rules for the safe handling of radioactivity are followed. Take precautions when disposing of radioactive waste. Refer to Appendix A for further safety tips.
⚠️ Toxic substances are used. Exercise caution when handling. Refer to Appendix A for further safety tips.
Chapter 3 Tracking the Target Protein 24

Introduction .. 24

A. Labeling Cells and Proteins 26

Metabolic Labeling Cells in Culture 27

Protocol 3.1 Metabolic Labeling Adherent Cells — 28
Protocol 3.2 Metabolic Labeling Cells Growing in Suspension — 28
Protocol 3.3 Pulse-Chase Labeling — 29

Labeling Proteins Present at the Plasma Membrane 30

Protocol 3.4 Lactoperoxidase Labeling Cell Surface Proteins — 31
Protocol 3.5 Labeling Surface Proteins with IODO-GEN® — 32
Protocol 3.6 Non-radioactive Biotinylation of Cell Surface Proteins — 33
Protocol 3.7 Domain-Selective Biotinylation and Streptavidin-Agarose Precipitation — 34
Protocol 3.8 Labeling Isolated Proteins with Chloramine T — 36

B. Lysis—Preparation of the Cell Free Extract 37

Lysis Buffers ... 37

Protocol 3.9 Lysis of Cells in Suspension (Continuation of Protocol 3.2) — 38
Protocol 3.10 Lysis of Adherent Cells (Continuation of Protocol 3.1) — 39

C. Principles of Immunoprecipitation 39

Antibodies as Detection Tools 39
Polyclonal Antibodies ... 40
Monoclonal Antibodies .. 40

Antibody Based Analytical Techniques: Western Blotting and Immunoprecipitation 40

Protocol 3.11 Immunoprecipitation — 42

Protein Interaction Analysis 44

Protocol 3.12 Sequential Immunoprecipitation: Dissociation and Reimmunoprecipitation of Immune Complexes — 44
Protocol 3.14 Nondenaturing Immunoprecipitation — 47

D. Additional Methods to Identify Associated Proteins 47

Sucrose Gradients .. 48

Protocol 3.15 Preparation of Sucrose Gradients — 48

Fractionating a Sucrose Gradient 51

Chemical Cross-Linking .. 53

General Considerations for Cross-Linking 54

Protocol 3.18 Cross-Linking Extraneously Added Ligand to Cells — 56
Chapter 4 Electrophoretic Techniques .. 63

Introduction to Polyacrylamide Gel Electrophoresis (PAGE) 63
A. Preparation of SDS-Polyacrylamide Gels 66
 Protocol 4.1 Assembling the Plates — 66

Choosing the Acrylamide Concentration 67
Protocol 4.2 Casting the Separating Gel — 67
Protocol 4.3 Casting the Stacking Gel — 69
Protocol 4.4 Gradient Gels — 70
Protocol 4.5 Sample Preparation — 72
Protocol 4.6 Running the Gel: Attaching the Gel Cassette to the Apparatus and Loading the Samples — 73
Protocol 4.7 Drying the Gel — 76
Protocol 4.8 Separation of Low Molecular Weight Proteins by Tricine-SDS-PAGE (TSDS-PAGE) — 77

Safety Considerations .. 79
B. 2-Dimensional (2-D) Gel Systems .. 79

Isoelectric Focusing ... 81
Protocol 4.9 Preparation of the Sample for Isoelectric Focusing — 83

Single-Step Extraction/Solubilization Buffer 84
Protocol 4.10 Preparation and Running of Isoelectric Focusing Tube Gels — 84
Protocol 4.11 Equilibration of the First-Dimension Gel or Strip — 86

Flaws with 2-D Analysis ... 86
Protocol 4.12 Measuring the pH of the Gel Slices — 87
Protocol 4.13 Nonequilibrium pH Gradient Electrophoresis (NEPHGE) — 89
Protocol 4.14 2-D Gels—The Second Dimension: SDS-PAGE — 90

Fluorescence Two-Dimensional Difference Gel Electrophoresis (2-D DIGE) .. 91
Protocol 4.15 Labeling Proteins with Cyanine Dyes (Cy3 and Cy5) — 91
2-D PAGE Databases ... 92
Protocol 4.16 Nonreducing-Reducing 2-D Gels — 92
C. Detection of Protein Bands in Polyacrylamide Gels

- **Protocol 4.17** Staining and Destaining the Gel with Coomassie Blue — 96
- **Protocol 4.18** Coomassie Staining Using GelCode® Blue — 98
- **Protocol 4.19** Staining Gels with SYPRO® Ruby — 98

Viewing and Imaging a SYPRO Ruby-Stained 1-D or 2-D Gel — 99

- **Protocol 4.20** Silver Staining — 100
- **Protocol 4.21** Reversible Negative Staining of Proteins in Gels with Imidazole and Zinc Salts — 101
- **Protocol 4.22** Molecular Weight Determination by SDS-PAGE — 103

D. Recovery of Proteins from the Gel

- **Protocol 4.23** Excising the Protein Band from the Dried Gel — 105
- **Protocol 4.24** Extracting the Target Protein from the Dried Gel — 106

E. Identification of Enzyme Activity in Polyacrylamide Gels

General Considerations — 107

- **Protocol 4.25** Localization of Proteases: Copolymerization of Substrate in the Separating Gel — 107
- **Protocol 4.26** Identification of Protease Inhibitors: Reverse Zymography — 108
- **Protocol 4.27** Locating the Enzyme Activity: Reacting the Gel with Substrate Solution after Electrophoresis — 109
- **Protocol 4.28** Detection of β-glucuronidase Activity in Polyacrylamide Gels — 110

Identification of DNA Binding Proteins—Gel Shift Assay — 111

- **Protocol 4.29** Gel Shifts — 112

Chapter 5 Getting Started with Protein Purification

Introduction — 118

A. Making a Cell Free Extract

- **Cellular Disruption** — 120
- **Extraction Buffer Composition** — 122
- **Protease Inhibitors** — 122
- **Methods of Cell Disruption** — 123
- **Clarification of the Extract** — 125

- **Protocol 5.1** Nuclear Extracts — 126
- **Protocol 5.2** Total Lymphocyte Extract — 127
- **Protocol 5.3** Subcellular Fractionation — 127

- **Subcellular Markers** — 128

B. Protein Quantitation

- **The Bradford Method** — 128

- **Protocol 5.4** Bradford Standard Assay — 130
Protocol 5.5 Bradford Microassay — 132
Protocol 5.6 Protein Determination Using Bicinchoninic Acid (BCA) — 133
Compatible Substances for the BCA Protein Assay 134
Incompatible Substances .. 134
Protocol 5.7 NanoOrange® Protein Quantitation Assay: A Fluorescence-Based Assay of Proteins in Solution — 135

C. Manipulating Proteins in Solution ... 136
Stabilization and Storage of Proteins ... 136
Concentrating Proteins from Dilute Solutions 137
 Protocol 5.8 Recovery of Protein by Ammonium Sulfate Precipitation — 138
 Ultrafiltration ... 138
 Lyophilization ... 140
 Dialysis .. 140
 Protocol 5.9 Preparation of Dialysis Tubing — 141
 Changing the Buffer by Gel Filtration .. 142

D. Precipitation Techniques ... 143
 Protocol 5.10 Salting Out with Ammonium Sulfate — 143
 Protocol 5.11 Precipitation with Acetone — 145
Precipitation with Polyethylene Glycol (PEG) .. 146
 Protocol 5.12 PEG Precipitation — 146
 Protocol 5.13 Removal of PEG from Precipitated Proteins — 147
Precipitation by Selective Denaturation ... 148
 Protocol 5.14 Recovery of Protein from Dilute Solutions by Methanol Chloroform Precipitation — 148
 Protocol 5.15 Recovery of Protein by Trichloroacetic Acid (TCA) Precipitation — 149
 Protocol 5.16 Concentration of Proteins by Acetone Precipitation — 150
What to Do When All Activity Is Lost .. 150

Chapter 6 Membrane Proteins .. 153
Introduction .. 153

A. Peripheral Membrane Proteins ... 154
 Protocol 6.1 Alkali Extraction — 156
 Protocol 6.2 High pH Membrane Fractionation — 157

B. Integral Membrane Proteins .. 158
 Organic Alcohol Extraction of Peripheral Membrane Proteins 158
Contents

C. Detergents
- Properties of Detergents 165
- Critical Micelle Concentration (CMC) 165
- Micelle Molecular Weight 165
- Hydrophile-Lipophile Balance (HLB) 166
- Classification of Detergents 166
- Ionic Detergents 166
- Nonionic Detergents 166
- Bile Salts ... 166
- Detergent Solubilization 167
- Choosing a Detergent 168
- Choice of Initial Conditions 169
 - **Protocol 6.5** Differential Detergent Solubilization — 169
 - **Protocol 6.6** Solubilization Trial — 171
- Protein-to-Detergent Ratio 172
- Detergent Removal 173
- Removal of Ionic Detergents 173
- Removal of Nonionic Detergents 173
- Extracti-Gel® D 173

Chapter 7 Transfer and Detection of Proteins on Membrane Supports .. 177

- Introduction .. 177
- **A. Transfer of Proteins to Membrane Supports** 177
 - **Protocol 7.1** Transfer of Proteins to Nitrocellulose or Polyvinylidene Difluoride — 178
 - Troubleshooting Western Blots 181
 - **Protocol 7.2** Enhanced Capture of Small Histidine Containing Polypeptides on Membranes in the Presence of ZnCl₂ — 181
 - **Protocol 7.3** Dot Blots — 182
 - **Protocol 7.4** Thin-Layer Chromatography Blotting — 182
- **B. Staining the Blot** 183
 - **Protocol 7.5** Total Protein Staining with India Ink — 183
 - **Protocol 7.6** Reversible Staining with Ponceau S — 184
 - **Protocol 7.7** Irreversible, Rapid Staining with Coomassie Brilliant Blue — 184
 - **Protocol 7.8** Staining Immobilized Glycoproteins by Periodic Acid/Schiff (PAS) — 185
C. Recovery of Proteins from the Blot ... 186
 Protocol 7.9 Recovery of Proteins Using an Organic Solvent System — 186
 Protocol 7.10 Recovery of Proteins from the Blot Using a Detergent-Based Solvent
 System — 187
 Protocol 7.11 Blocking the Blot — 188
 Protocol 7.12 Exposing the Blot to Primary Antibody — 188

 Ligand Blotting ... 190
 Southwestern Blotting .. 191
 Far Western Blotting .. 191
 Protocol 7.13 Ligand Binding — 192
 Protocol 7.14 Lectin Blotting — 193
 Protocol 7.15 Bacterial Protein Overlay Analysis — 195

D. Detection of the Target Protein ... 196
 Protein A ... 196
 Second Antibody Conjugate ... 197
 Biotin Avidin System ... 197
 Protocol 7.16 Biotinylation of Proteins — 197
 Protocol 7.17 Purifying and Biotinylating Antibodies
 from Immunoblots — 198
 Enzymatic Detection Methods .. 199
 Horseradish Peroxidase ... 199
 Protocol 7.18 Colorimetric Detection with Diaminobenzidine,
 3,3'4,4'-tetraaminobiphenyl (DAB) — 199
 Protocol 7.19 Colorimetric Detection Using Alkaline Phosphatase — 200
 Protocol 7.20 Enhanced Chemiluminescence — 201
 Protocol 7.21 Stripping and Reprobing the Blot — 203
 Detection of Radiolabeled Proteins 203
 Protocol 7.22 Direct Autoradiography — 204
 Removing Unwanted Background Signal from X-ray Film 205
 Protocol 7.23 Phosphorimaging — 207

Chapter 8 Identification of the Target Protein 211

 Introduction .. 211
 A. Peptide Mapping ... 211
 Protocol 8.1 Thermal Denaturation — 212
 Preparing the Target Protein for Digestion 213
 B. Enzymatic Cleavage of Proteins 214
 Protocol 8.2 Peptide Mapping by Proteolysis and Analysis by
 Electrophoresis — 215
 Cleavage of Proteins Transferred to PVDF or NC Membranes 217
C. Chemical Cleavage

- Protocol 8.5 Cyanogen Bromide Cleavage of Proteins on PVDF Membrane — 219
- Protocol 8.6 N-Chlorosuccinimide (NCS) Mapping — 221
- Protocol 8.7 Hydroxylamine Cleavage of Proteins in Polyacrylamide Gels — 222
- Protocol 8.8 Formic Acid Cleavage — 223
- Protocol 8.9 Chemical Cleavage at Cysteine Residues with DTNB — 224

D. Microsequencing from PVDF Membranes

- When, and In What Form Do You Submit the Target Protein to the Protein Sequencing Core? — 227
- Protocol 8.10 Transferring Spots from 2-D Gels to PVDF Membranes — 228
- Sequencing Glycopeptides — 228
- Protocol 8.11 Protein Hydrolysis: Total Amino Acid Composition of the Target Protein — 229
- Identifying Proteins Using Mass Spectrometry — 230
- Preparation of Proteins for MS Analysis — 231
- Partial Proteolysis — 231
- Protocol 8.12 In-gel Tryptic Digestion — 232
- Protocol 8.13 Extraction of Peptides from Gel Pieces Containing Integral Membrane Proteins — 233
- Elution of Target Protein from SDS-PAGE — 233
- Protein Transfer to a Membrane — 234
- Considerations — 234
- MS Basics — 234
- Electrospray and Tandem Mass Spectrometry — 235
- MALDI and Peptide-Mass Mapping — 237
- Post-Source Decay (PSD) MALDI-MS — 237
- Protein Identification by MS — 238
- Peptide Mass Fingerprint Analysis — 238
- Peptide Fragmentation — 239
- Peptide Ladder Sequencing — 240
- Peptide Sequence Tag — 240
- Identification of a Gene Product — 240
- Posttranslational Modifications and MS — 241
- Caveats When Using MS — 243
- Protein Database Searches — 244
- Bioinformatics — 244
Chapter 9 Identifying and Analyzing Posttranslational Modifications .. 259

Introduction ... 259

A. Glycosylation .. 261

 Protocol 9.1 Chemical Deglycosylation Using Trifluoromethanesulfonic Acid (TFMS) — 265

N-Glycosylation .. 267

 Protocol 9.2 Removal of the Oligosaccharide from the Glycoprotein with N-Glycanase — 267
 Protocol 9.3 N-glycosidase F (GPase F) Treatment of Glycoproteins in Immunoprecipitates — 268

 Protocol 9.4 Tunicamycin — 269

O-Glycosylation .. 270

 Protocol 9.5 Identification of O-Glycosylated Amino Acids by Alkaline β-Elimination — 270
 Protocol 9.6 β-Elimination of O-Glycans from Glycoproteins Immobilized on Blots — 271
 Protocol 9.7 O-Glycosidase — 271
 Protocol 9.8 O-Glycanase — 272

Combined Use of N-Glycanase and O-Glycanase .. 272

 Protocol 9.9 Endoglycosidase H — 272

Neuraminidase (NA) .. 273

 Protocol 9.10 Desialylation with Clostridium perfringens Neuraminidase — 274

 Protocol 9.11 Desialylation with Arthrobacter ureafaciens Neuraminidase — 275

Lectins as Tools for Carbohydrate Analysis .. 276

Proteoglycans ... 277

 Protocol 9.12 Is the Target Protein a Proteoglycan? — 277
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.14</td>
<td>Can the Target Protein Be Phosphorylated?</td>
<td>281</td>
</tr>
<tr>
<td>9.15</td>
<td>Determination of the Type of Phosphorylated Amino Acid-Immunoblotting with Anti-Phosphoamino Acid Antibodies</td>
<td>282</td>
</tr>
<tr>
<td>9.16</td>
<td>Phosphorylation of Membrane Proteins with [γ-32P]GTP</td>
<td>283</td>
</tr>
<tr>
<td>9.17</td>
<td>Potato Acid Phosphatase</td>
<td>283</td>
</tr>
<tr>
<td>9.18</td>
<td>Alkaline Phosphatase</td>
<td>285</td>
</tr>
<tr>
<td>9.19</td>
<td>Immune Complex Kinase</td>
<td>285</td>
</tr>
<tr>
<td>9.20</td>
<td>Renaturation of Immobilized Kinases on PVDF Membranes</td>
<td>287</td>
</tr>
<tr>
<td>9.21</td>
<td>Phosphorylation of Substrates in SDS-Gels</td>
<td>289</td>
</tr>
<tr>
<td>9.22</td>
<td>One-Dimensional Phosphopeptide Mapping</td>
<td>291</td>
</tr>
<tr>
<td>9.23</td>
<td>Isolation of Phospho-Proteins from SDS Gels: Preparation for Phosphopeptide Mapping</td>
<td>292</td>
</tr>
<tr>
<td>9.24</td>
<td>Tryptic Digestion of Isolated Phosphoproteins</td>
<td>293</td>
</tr>
<tr>
<td>9.25</td>
<td>Applying the Sample to the TLC Plate and Electrophoresis in the First Dimension</td>
<td>294</td>
</tr>
<tr>
<td>9.26</td>
<td>Second Dimension: Thin-Layer Chromatography</td>
<td>295</td>
</tr>
<tr>
<td>9.27</td>
<td>Isolation of Individual Phosphopeptides from TLC Plates</td>
<td>296</td>
</tr>
<tr>
<td>9.28</td>
<td>Phosphoamino Acid Analysis</td>
<td>296</td>
</tr>
<tr>
<td>9.29</td>
<td>Phosphoamino Acid Analysis of Phosphoproteins Isolated from PVDF Membranes</td>
<td>298</td>
</tr>
<tr>
<td>9.30</td>
<td>Identification of Phosphohistidine Residues Following Heat Treatment</td>
<td>299</td>
</tr>
<tr>
<td>9.31</td>
<td>Treatment with Diethyl Pyrocarbonate</td>
<td>300</td>
</tr>
<tr>
<td>9.32</td>
<td>Treatment of Phosphorylated Membranes with HCl and NaOH</td>
<td>300</td>
</tr>
<tr>
<td>9.33</td>
<td>Sulfation</td>
<td>301</td>
</tr>
<tr>
<td>9.34</td>
<td>Identification of Palmitoylated and Myristoylated Proteins</td>
<td>304</td>
</tr>
<tr>
<td>9.35</td>
<td>Metabolic Labeling with [3H]Mevalonic Acid Derivatives</td>
<td>306</td>
</tr>
<tr>
<td>9.36</td>
<td>Enzymatic Prenylation of Recombinant Proteins</td>
<td>308</td>
</tr>
<tr>
<td>9.37</td>
<td>Glypiation</td>
<td>308</td>
</tr>
<tr>
<td>9.38</td>
<td>Is the Target Protein Glycosyl Phosphatidylinositol Anchored?</td>
<td>310</td>
</tr>
<tr>
<td>9.39</td>
<td>Use of Triton X-114</td>
<td>310</td>
</tr>
</tbody>
</table>
Protocol 9.37 Preparation of Triton X-114 — 310
Protocol 9.38 Fractionation of Integral Membrane Proteins with Triton X-114 — 311
Protocol 9.39 Digestion with Phosphatidylinositol Specific Phospholipase C (PI-PLC) — 312

Metabolic Labeling with Precursors of the GPI Structure 313
Use of Anti-CRD 313

D. Selected Modifications 314
Transamidation 314
Acetylation 314
Methylation 314
Hydroxylation of Proline and Lysine 315
Degradation 315
Ubiquitination 315
Proteolytic Processing 316

Chapter 10 Chromatography 324
Introduction 324

A. Important Terminology Used in Chromatography 325

B. Gel Filtration Chromatography 326
Choice of Buffer 329
Choice of Column Size 329
Protocol 10.1 Preparation of the Gel: Hydrating and Degassing — 330
Protocol 10.2 Packing the Column — 331
Flow Rate 332
Hydrostatic Pressure 333
Sample Application 334
Protocol 10.3 Loading Sample onto a Drained Bed — 334
Loading Sample Under the Eluent 335
Making Sure the Column Does Not Run Dry 335
Molecular Weight Determination 335
Spin Columns Used in Gel Filtration 336
Protocol 10.4 Spin Columns — 337
Protocol 10.5 Testing Fractions to Locate Protein: Bradford Spot Test — 338

C. Introduction to HPLC 338
Packing Materials 339
Column Designs 340
Column Guards 340
Detectors 340
Choosing the Right Conditions—Some Helpful Tips 341
HPLC—Size Exclusion .. 342

D. Ion Exchange Chromatography: Separation on the Basis of Charge 342
 Simplified Theory of Ion Exchange 343
 Functional Groups on Exchange Columns 344
 Choice of Exchanger Matrix ... 345
 Preparation of the Exchanger 346
 Choice of Buffer .. 346
 Batch Adsorption ... 347

 Protocol 10.6 Selecting the Starting pH — 348
 Protocol 10.7 Packing an Ion Exchange Column — 348

 Experimental Tips .. 349
 Elution-Step or Linear Gradient? 349

 Protocol 10.8 Regeneration of Sephadex Ion Exchangers — 351
 Protocol 10.9 Regeneration of Sepharose Ion Exchangers — 351
 Protocol 10.10 Chromatofocusing — 351

 Removing the Polybuffer ... 353
 HPLC-Ion Exchange Chromatography 353
 Membrane Adsorbers .. 354
 Perfusion Chromatography .. 355

E. Hydrophobic Interaction Chromatography (HIC) 356
 Simplified Theory of HIC .. 356

 Protocol 10.11 Protein Fractionation by HIC — 357
 Protocol 10.12 Solid Phase Extraction Cartridges — 358

 Reversed Phase HPLC .. 359
 Reversed Phase HPLC for the Isolation of Peptides 361
 Multidimensional Liquid Chromatography 362

F. Affinity Chromatography .. 363
 Immunoaffinity Purification .. 364

 Protocol 10.13 Direct Antibody Coupling to Protein A Beads — 365
 Protocol 10.14 Indirect Antibody Coupling to Protein A Beads — 366
 Protocol 10.15 Preparation of Affinity Columns — 367

 Flow Rate .. 368
 Binding Antigens to Immunoaffinity Matrices 369
 Nonspecific Interactions ... 369

 Protocol 10.16 Blocking the Affinity Matrix — 370

 Elution of Antigens from Immunoaffinity Matrices 370

 Protocol 10.17 Eluting the Antigen — 372

 Ligand Affinity Chromatography 373
Chapter 11 Recombinant Protein Techniques 385

Introduction ... 385
Recombinant Protein for Antibody Production 386
Protein for Biochemical or Cell Biological Studies 387

A. In vitro Transcription and Translation 388

Protocol 11.1 Preparation of the DNA Template — 388
Protocol 11.2 In vitro Transcription—Preparation of the mRNA — 389
Protocol 11.3 Guanylyltransferase Catalyzed Addition of a G(5')ppp(5')G Cap to mRNA — 390

Protocol 11.4 In vitro Translation: Protein Synthesis — 391

Protocol 11.5 Cotranslational Processing Using Canine Pancreatic Microsomal Membranes — 392
Protocol 11.6 Translocated Products Are Resistant to Protease Digestion — 393
Protocol 11.7 Was the Translational Product Glycosylated?
 Endoglycosidase H (Endo H) Analysis — 394

Protein Transduction: A Method for Introducing Exogenous Proteins into Cells 395

B. Recombinant Gene Products in E. coli: Expression, Identification and Characterization 396

Expression and Purification of lacZ and trpE Fusion Proteins 397

Protocol 11.8 lacZ Induction — 398
Protocol 11.9 Induction of the trpE Fusion Protein — 398
Protocol 11.10 Preparation of the Protein Extract — 399
Protocol 11.11 Solubilization of the Fusion Protein — 400
Protocol 11.12 Purification of Eukaryotic Proteins from Inclusion Bodies in E. coli — 400

C. Affinity Tags ... 402

Removing the Tag 403
Glutathione-S-Transferase (GST) Fusion Proteins ... 404
 Protocol 11.13 Production and Analysis of GST Fusion Protein
 Transformants (Small Scale) — 405
 Protocol 11.14 Purification of GST Fusion Proteins — 406
 Protocol 11.15 Removing the GST from the Fusion Protein — 407
 Protocol 11.16 His-Tag Purification System — 408
Maltose Binding Protein (MBP) Fusion Proteins ... 410
Staphylococcal Protein A and ZZ ... 413
Green Fluorescent Protein (GFP) ... 415

D. Expression of Foreign Proteins in Eukaryotic Cells .. 415
 Expression and Isolation of Recombinant Proteins from Yeast 415
 Protocol 11.17 Preparation of Protein Extracts from Yeast — 416
 Expression of Proteins in Insect Cells Using Baculoviral Vectors 418
 Expression of Foreign Proteins in Mammalian Cells 419
 Transfection: Expression of Recombinant Proteins
 in Eukaryotic Systems ... 420
 Protocol 11.18 Transfection of DNA into Eukaryotic Cells with
 Calcium Phosphate — 421
 Protocol 11.19 Glycerol Shock — 422
 Protocol 11.20 Transfection Using DEAE-Dextran — 423
 Protocol 11.21 Stable Transfections — 424
 Protocol 11.22 Picking Stable Colonies — 425

Appendices ... 431

A. Safety Considerations ... 433
 First Aid: Emergency Procedures .. 433

B. Antibody Preparation ... 435
 Production of Polyclonal Antisera in Rabbits .. 435
 Protocol B.1 Preparation of the Antigen-Adjuvant Emulsion — 436
 Protocol B.2 Intramuscular Immunization (IM) — 436
 Protocol B.3 Intradermal Immunization — 437
 Protocol B.4 Subcutaneous Immunization — 437
 Protocol B.5 Bleeding the Rabbit and Serum Preparation — 437
 Protocol B.6 Precipitation of IgG with Saturated Ammonium
 Sulfate — 438
 Purification of Antibody Using Protein A Affinity Columns 439
 Protocol B.7 Purifying Total Ig — 439

C. Solutions ... 441
 Commercial Strengths of Common Laboratory Chemicals 441
 Water .. 441
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molarity ... 442</td>
</tr>
<tr>
<td>Choosing and Preparing Buffers 442</td>
</tr>
<tr>
<td>Common Laboratory Solutions 447</td>
</tr>
<tr>
<td>Extinction Coefficients 449</td>
</tr>
<tr>
<td>D. Nucleic Acids .. 451</td>
</tr>
<tr>
<td>Spectrophotometric Conversions 451</td>
</tr>
<tr>
<td>DNA/Protein Conversions 451</td>
</tr>
<tr>
<td>Oligonucleotide Concentrations 451</td>
</tr>
<tr>
<td>Protocol D.1 Fluorometric Estimation of DNA Concentrations — 451</td>
</tr>
<tr>
<td>RNA Precipitation ... 452</td>
</tr>
<tr>
<td>E. Modifications and Motifs 456</td>
</tr>
<tr>
<td>Nomenclature ... 456</td>
</tr>
<tr>
<td>Protein Modification Sequences 458</td>
</tr>
<tr>
<td>Protein Kinase Recognition Sequence Motifs 460</td>
</tr>
<tr>
<td>Subcellular Localization Motifs 461</td>
</tr>
<tr>
<td>Protein Databases ... 462</td>
</tr>
<tr>
<td>F. Centrifugation .. 465</td>
</tr>
<tr>
<td>Nomogram .. 467</td>
</tr>
<tr>
<td>General Purpose Centrifuge Rotors 469</td>
</tr>
<tr>
<td>Ultracentrifuge Rotors .. 473</td>
</tr>
<tr>
<td>G. Proteases and Proteolytic Enzyme Inhibitors 480</td>
</tr>
<tr>
<td>Commonly Used Proteases 480</td>
</tr>
<tr>
<td>Protocol G.1 Preparation of Defatted BSA — 482</td>
</tr>
<tr>
<td>Protease Inhibitors .. 483</td>
</tr>
<tr>
<td>H. Radioactivity .. 490</td>
</tr>
<tr>
<td>Manual and Machine Film Processing 491</td>
</tr>
<tr>
<td>I. Tissue Culture ... 493</td>
</tr>
<tr>
<td>Transwell Permeable Supports 493</td>
</tr>
<tr>
<td>J. Miscellaneous ... 495</td>
</tr>
<tr>
<td>Protocol J.1 Siliconizing Glassware — 495</td>
</tr>
<tr>
<td>Unit Prefixes .. 495</td>
</tr>
<tr>
<td>The Greek Alphabet ... 496</td>
</tr>
<tr>
<td>Abbreviations ... 496</td>
</tr>
<tr>
<td>HPLC Pump Pressure Conversion 499</td>
</tr>
</tbody>
</table>
Contents

Dipeptide Masses ... 500
Mass Differences Considered in Molecular Weight Analysis
 of Proteins ... 501

K. List of Suppliers, Vendors, Manufacturers 502

Index ... 511
Protein Analysis and Purification
Benchtop Techniques
Rosenberg, I.M.
2005, XXVI, 520 p., Hardcover
A product of Birkhäuser Basel