Contents

Part I The Nature of Motor Control

Nature of Motor Control: Not Strictly “Motor”, Not Quite “Control”
Michael T. Turvey
3

Beyond Control: The Dynamics of Brain-Body-Environment Interaction in Motor Systems
Randall D. Beer
7

Towards Testable Neuromechanical Control Architectures for Running
Shai Revzen, Daniel E. Koditschek, and Robert J. Full
25

Control from an Allometric Perspective
Bruce J. West
57

Synergies: Atoms of Brain and Behavior
J.A. Scott Kelso
83

Nature of Motor Control: Perspectives and Issues
Michael T. Turvey and Sergio Fonseca
93

Part II What is Encoded in the Brain?

Past, Present, and Emerging Principles in the Neural Encoding of Movement
Timothy J. Ebner, Claudia M. Hendrix, and Siavash Pasalar
127

From Intention to Action: Motor Cortex and the Control of Reaching Movements
John F. Kalaska
139
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control of Muscle Synergies by Cortical Ensembles</td>
<td>179</td>
</tr>
<tr>
<td>Michelle M. Morrow, Eric A. Pohlmeyer, and Lee E. Miller</td>
<td></td>
</tr>
<tr>
<td>Behavioral and Neurophysiological Aspects of Target Interception</td>
<td>201</td>
</tr>
<tr>
<td>Hugo Merchant, Wilbert Zarco, Luis Prado, and Oswaldo Pérez</td>
<td></td>
</tr>
<tr>
<td>Learning from Learning: What Can Visuomotor Adaptations Tell us About the Neuronal Representation of Movement?</td>
<td>221</td>
</tr>
<tr>
<td>Rony Paz and Eilon Vaadia</td>
<td></td>
</tr>
<tr>
<td>The Problem of Parametric Neural Coding in the Motor System</td>
<td>243</td>
</tr>
<tr>
<td>Jacob Reimer and Nicholas G. Hatsopoulos</td>
<td></td>
</tr>
<tr>
<td>Part III Perception and Action</td>
<td></td>
</tr>
<tr>
<td>Introduction to Section on Perception and Action</td>
<td>263</td>
</tr>
<tr>
<td>Brett R. Fajen</td>
<td></td>
</tr>
<tr>
<td>Mutuality in the Perception of Affordances and the Control of Movement</td>
<td>273</td>
</tr>
<tr>
<td>Claudia Carello and Jeffrey B. Wagman</td>
<td></td>
</tr>
<tr>
<td>Object Avoidance During Locomotion</td>
<td>293</td>
</tr>
<tr>
<td>David A. McVea and Keir G. Pearson</td>
<td></td>
</tr>
<tr>
<td>The Roles of Vision and Proprioception in the Planning of Reaching Movements</td>
<td>317</td>
</tr>
<tr>
<td>Fabrice R. Sarlegna and Robert L. Sainburg</td>
<td></td>
</tr>
<tr>
<td>Using Predictive Motor Control Processes in a Cognitive Task: Behavioral and Neuroanatomical Perspectives</td>
<td>337</td>
</tr>
<tr>
<td>James Stanley and R. Christopher Miall</td>
<td></td>
</tr>
<tr>
<td>The Human Mirror Neuron System and Embodied Representations</td>
<td>355</td>
</tr>
<tr>
<td>Lisa Aziz-Zadeh and Richard B. Ivry</td>
<td></td>
</tr>
<tr>
<td>Disorders of the Perceptual-Motor System</td>
<td>377</td>
</tr>
<tr>
<td>Steven A. Jax and H. Branch Coslett</td>
<td></td>
</tr>
<tr>
<td>Part IV Motor Learning</td>
<td></td>
</tr>
<tr>
<td>Some Contemporary Issues in Motor Learning</td>
<td>395</td>
</tr>
<tr>
<td>Karl M. Newell and Rajiv Ranganathan</td>
<td></td>
</tr>
<tr>
<td>Motor Learning and Consolidation: The Case of Visuomotor Rotation</td>
<td>405</td>
</tr>
<tr>
<td>John W. Krakauer</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Cortical Processing during Dynamic Motor Adaptation .. 423
Simon A. Overduin, Andrew G. Richardson, and Emilio Bizzi

Motor Learning: Changes in the Structure of Variability in a Redundant Task .. 439
Hermann Müller and Dagmar Sternad

Time Scales, Difficulty/Skill Duality, and the Dynamics of Motor Learning 457
Karl M. Newell, Yeou-Teh Liu, and Gottfried Mayer-Kress

Part V Bridging of Models for Complex Movements in 3D

Bridging of Models for Complex Movements in 3D .. 479
Stan Gielen

The Posture-Based Motion Planning Framework: New Findings Related to Object Manipulation, Moving Around Obstacles, Moving in Three Spatial Dimensions, and Haptic Tracking ... 485
David A. Rosenbaum, Rajal G. Cohen, Amanda M. Dawson, Steven A. Jax, Ruud G. Meulenbroek, Robrecht van der Wel, and Jonathan Vaughan

Grasping Occam’s Razor ... 499
Jeroen B.J. Smeets, Eli Brenner, and Juul Martin

Review of Models for the Generation of Multi-Joint Movements in 3-D 523
Stan Gielen

Part VI The Hand as a Complex System

Why the Hand? ... 553
Francisco J. Valero-Cuevas

Selective Activation of Human Finger Muscles after Stroke or Amputation 559
Marc H. Schieber, C.E. Lang, K.T. Reilly, P. McNulty, and A. Sirigu

Neural Control of Hand Muscles During Prehension .. 577
Jamie A. Johnston, Sara A. Winges, and Marco Santello

Multi-Finger Prehension: Control of a Redundant Mechanical System 597
Mark L. Latash and Vladimir M. Zatsiorsky
A Mathematical Approach to the Mechanical Capabilities of Limbs and Fingers .. 619
Francisco J. Valero-Cuevas

Part VII Forty Years of Equilibrium-Point Hypothesis

Origin and Advances of the Equilibrium-Point Hypothesis 637
Anatol G. Feldman

The Biomechanics of Force Production 645
Denis Rancourt and Neville Hogan

The Implications of Force Feedback for the λ Model 663
Richard Nichols and Kyla T. Ross

Control and Calibration of Multi-Segment Reaching Movements 681
James R. Lackner and Paul DiZio

The Equilibrium-Point Hypothesis – Past, Present and Future 699
Anatol G. Feldman and Mindy F. Levin

Subject Index .. 727
Progress in Motor Control
A Multidisciplinary Perspective
Sternad, D. (Ed.)
2009, XVII, 734 p., Hardcover