Contents

Preface xiii
Preface to 2nd Edition xvii
Preface to 3rd Edition xix

Part 1. Basic Theory—The Simplex Method and Duality

<table>
<thead>
<tr>
<th>Chapter 1. Introduction</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Managing a Production Facility</td>
<td>3</td>
</tr>
<tr>
<td>2. The Linear Programming Problem</td>
<td>6</td>
</tr>
<tr>
<td>Exercises</td>
<td>8</td>
</tr>
<tr>
<td>Notes</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2. The Simplex Method</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. An Example</td>
<td>13</td>
</tr>
<tr>
<td>2. The Simplex Method</td>
<td>16</td>
</tr>
<tr>
<td>3. Initialization</td>
<td>19</td>
</tr>
<tr>
<td>4. Unboundedness</td>
<td>22</td>
</tr>
<tr>
<td>5. Geometry</td>
<td>22</td>
</tr>
<tr>
<td>Exercises</td>
<td>24</td>
</tr>
<tr>
<td>Notes</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3. Degeneracy</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Definition of Degeneracy</td>
<td>29</td>
</tr>
<tr>
<td>2. Two Examples of Degenerate Problems</td>
<td>29</td>
</tr>
<tr>
<td>3. The Perturbation/Lexicographic Method</td>
<td>32</td>
</tr>
<tr>
<td>4. Bland’s Rule</td>
<td>36</td>
</tr>
<tr>
<td>5. Fundamental Theorem of Linear Programming</td>
<td>38</td>
</tr>
<tr>
<td>6. Geometry</td>
<td>39</td>
</tr>
<tr>
<td>Exercises</td>
<td>42</td>
</tr>
<tr>
<td>Notes</td>
<td>43</td>
</tr>
</tbody>
</table>

| Chapter 4. Efficiency of the Simplex Method | 45 |
Chapter 1. Performance Measures
- Page 45

Chapter 2. Measuring the Size of a Problem
- Page 45

Chapter 3. Measuring the Effort to Solve a Problem
- Page 46

Chapter 4. Worst-Case Analysis of the Simplex Method
- Page 47

Exercises
- Page 52

Notes
- Page 53

Chapter 5. Duality Theory
- Page 55
 1. Motivation—Finding Upper Bounds
 - Page 55
 2. The Dual Problem
 - Page 57
 3. The Weak Duality Theorem
 - Page 58
 4. The Strong Duality Theorem
 - Page 60
 5. Complementary Slackness
 - Page 66
 6. The Dual Simplex Method
 - Page 68
 7. A Dual-Based Phase I Algorithm
 - Page 71
 8. The Dual of a Problem in General Form
 - Page 73
 9. Resource Allocation Problems
 - Page 74
 10. Lagrangian Duality
 - Page 78

Exercises
- Page 79

Notes
- Page 87

Chapter 6. The Simplex Method in Matrix Notation
- Page 89
 1. Matrix Notation
 - Page 89
 2. The Primal Simplex Method
 - Page 91
 3. An Example
 - Page 96
 4. The Dual Simplex Method
 - Page 101
 5. Two-Phase Methods
 - Page 104
 6. Negative Transpose Property
 - Page 105

Exercises
- Page 108

Notes
- Page 109

Chapter 7. Sensitivity and Parametric Analyses
- Page 111
 1. Sensitivity Analysis
 - Page 111
 2. Parametric Analysis and the Homotopy Method
 - Page 115
 3. The Parametric Self-Dual Simplex Method
 - Page 119

Exercises
- Page 120

Notes
- Page 124

Chapter 8. Implementation Issues
- Page 125
 1. Solving Systems of Equations: LU-Factorization
 - Page 126
 2. Exploiting Sparsity
 - Page 130
 3. Reusing a Factorization
 - Page 136
 4. Performance Tradeoffs
 - Page 140
5. Updating a Factorization 141
6. Shrinking the Bump 145
7. Partial Pricing 146
8. Steepest Edge 147
Exercises 149
Notes 150

Chapter 9. Problems in General Form 151
1. The Primal Simplex Method 151
2. The Dual Simplex Method 153
Exercises 159
Notes 160

Chapter 10. Convex Analysis 161
1. Convex Sets 161
2. Carathéodory’s Theorem 163
3. The Separation Theorem 165
4. Farkas’ Lemma 167
5. Strict Complementarity 168
Exercises 170
Notes 171

Chapter 11. Game Theory 173
1. Matrix Games 173
2. Optimal Strategies 175
3. The Minimax Theorem 177
4. Poker 181
Exercises 184
Notes 187

Chapter 12. Regression 189
1. Measures of Mediocrity 189
2. Multidimensional Measures: Regression Analysis 191
3. L^2-Regression 193
4. L^1-Regression 195
5. Iteratively Reweighted Least Squares 196
6. An Example: How Fast is the Simplex Method? 198
7. Which Variant of the Simplex Method is Best? 202
Exercises 203
Notes 208

Chapter 13. Financial Applications 211
1. Portfolio Selection 211
2. Option Pricing 216
Exercises 221
Notes 222

Part 2. Network-Type Problems 223

Chapter 14. Network Flow Problems 225
1. Networks 225
2. Spanning Trees and Bases 228
3. The Primal Network Simplex Method 233
4. The Dual Network Simplex Method 237
5. Putting It All Together 240
6. The Integrality Theorem 243
Exercises 244
Notes 252

Chapter 15. Applications 253
1. The Transportation Problem 253
2. The Assignment Problem 255
3. The Shortest-Path Problem 256
4. Upper-Bounded Network Flow Problems 259
5. The Maximum-Flow Problem 262
Exercises 264
Notes 269

Chapter 16. Structural Optimization 271
1. An Example 271
2. Incidence Matrices 273
3. Stability 274
4. Conservation Laws 276
5. Minimum-Weight Structural Design 279
6. Anchors Away 281
Exercises 284
Notes 284

Part 3. Interior-Point Methods 287

Chapter 17. The Central Path 289
Warning: Nonstandard Notation Ahead 289
1. The Barrier Problem 289
2. Lagrange Multipliers 292
3. Lagrange Multipliers Applied to the Barrier Problem 295
4. Second-Order Information 297
Chapter 18. A Path-Following Method 303
 1. Computing Step Directions 303
 2. Newton’s Method 305
 3. Estimating an Appropriate Value for the Barrier Parameter 306
 4. Choosing the Step Length Parameter 307
 5. Convergence Analysis 308
 Exercises 314
 Notes 318

Chapter 19. The KKT System 319
 1. The Reduced KKT System 319
 2. The Normal Equations 320
 3. Step Direction Decomposition 322
 Exercises 325
 Notes 325

Chapter 20. Implementation Issues 327
 1. Factoring Positive Definite Matrices 327
 2. Quasidfinite Matrices 331
 3. Problems in General Form 337
 Exercises 342
 Notes 342

Chapter 21. The Affine-Scaling Method 345
 1. The Steepest Ascent Direction 345
 2. The Projected Gradient Direction 347
 3. The Projected Gradient Direction with Scaling 349
 4. Convergence 353
 5. Feasibility Direction 355
 6. Problems in Standard Form 356
 Exercises 357
 Notes 358

Chapter 22. The Homogeneous Self-Dual Method 361
 1. From Standard Form to Self-Dual Form 361
 2. Homogeneous Self-Dual Problems 362
 3. Back to Standard Form 372
 4. Simplex Method vs Interior-Point Methods 375
 Exercises 379
Part 4. Extensions 383

Chapter 23. Integer Programming 385
1. Scheduling Problems 385
2. The Traveling Salesman Problem 387
3. Fixed Costs 390
4. Nonlinear Objective Functions 390
5. Branch-and-Bound 392
Exercises 404
Notes 405

Chapter 24. Quadratic Programming 407
1. The Markowitz Model 407
2. The Dual 412
3. Convexity and Complexity 414
4. Solution Via Interior-Point Methods 418
5. Practical Considerations 419
Exercises 422
Notes 423

Chapter 25. Convex Programming 425
1. Differentiable Functions and Taylor Approximations 425
2. Convex and Concave Functions 426
3. Problem Formulation 426
4. Solution Via Interior-Point Methods 427
5. Successive Quadratic Approximations 429
6. Merit Functions 429
7. Parting Words 433
Exercises 433
Notes 435

Appendix A. Source Listings 437
1. The Self-Dual Simplex Method 438
2. The Homogeneous Self-Dual Method 441

Answers to Selected Exercises 445

Bibliography 449

Index 457
Linear Programming
Foundations and Extensions
Vanderbei, R.J.
2008, XX, 468 p. 82 illus., 16 illus. in color., Hardcover