Contents

Part I Experimental Realization

1. **Elements for Designing an X-Ray Diffraction Experiment**
 1.1 X-Ray Sources .. 5
 1.2 Optical Elements .. 11
 1.3 Detectors .. 23

2. **Diffractometers and Reflectometers**
 2.1 X-Ray Reflectometers .. 32
 2.2 High-Resolution Diffractometer 37
 2.3 Limits of the Use of Powder Diffractometers 39
 2.4 Grazing-Incidence Diffraction 40

3. **Scans and Resolution in Angular and Reciprocal Space**
 3.1 Coherence of Radiation and Correlation of Sample Properties 44
 3.2 Scans Across the Reciprocal Space 47
 3.3 Resolution Elements .. 51

Part II Basic Principles

4. **Basic Principles** .. 63
 4.1 Description of the X-Ray Wavefield in Vacuum 63
 4.2 General Description of the Scattering Process 65
 4.3 Direction of Scattered Waves 68

5. **Kinematical Theory** .. 75
 5.1 Scattering From a Perfect Layer 75
 5.2 Two-Beam Approximation 81
 5.3 Kinematical Scattering From Deformed Crystals 85
 5.4 Kinematical Scattering From Multilayers 87
 5.5 Kinematical Scattering From Randomly Deformed Crystals .. 91
6 **Dynamical Theory** .. 97
 6.1 The Wave Equation for a Periodic Medium 97
 6.2 Boundary Conditions ... 99
 6.3 X-Ray Reflection .. 102
 6.4 Two-Beam Diffraction ... 104
 6.5 Layered Samples .. 112
 6.5.1 Multilayers: X-Ray Reflection 116
 6.5.2 Multilayers: Conventional X-Ray Diffraction 117
 6.6 A Comment on the Three-Beam Diffraction 119

7 **Semikinematical Theory** ... 123
 7.1 Basic Formulas ... 123
 7.2 Examples .. 125
 7.2.1 Small-Angle Scattering from Empty Holes in a
 Semi-infinite Matrix 125
 7.2.2 Small-Angle Scattering from Pyramidal Islands
 Randomly Placed on a Flat Surface 128
 7.2.3 Diffuse Scattering in Diffraction from Empty Holes in
 a Crystal ... 129
 7.2.4 Diffraction from a Thin Layer on a Semi-infinite
 Substrate .. 132

Part III Solution of Experimental Problems

8 **Determination of Layer Thicknesses of Single Layers and
 Multilayers** .. 143
 8.1 X-Ray Reflection by Single Layers 144
 8.2 X-Ray Reflection by Periodical Multilayers 153
 8.3 Coplanar X-Ray Diffraction by Single Layers 161
 8.4 Coplanar X-Ray Diffraction by Periodical Superlattices 166
 8.5 X-Ray Grazing Incidence Diffraction 171
 8.6 Buried Layers .. 174

9 **Lattice Parameters and Strains in Epitaxial Layers and
 Multilayers** .. 179
 9.1 Conventional Coplanar Diffraction 179
 9.2 Reciprocal-Space Mapping 190
 9.3 Coplanar Extremely Asymmetric Diffraction 193
 9.4 Utilization of Anomalous Scattering Effects 197
 9.5 Grazing-Incidence Diffraction 198
10 Diffuse Scattering From Volume Defects in Thin Layers
10.1 Weak and Strong Defects
10.2 Diffuse Scattering From Weak Defects
10.3 Weak Defects in a Subsurface Layer
10.4 Small-Angle Scattering From Small Defects in Thin Layers
10.5 Diffuse Scattering From an Array of Misfit Dislocations
10.6 Diffuse Scattering From Mosaic Layers

11 X-Ray Scattering by Rough Multilayers
11.1 Interface Roughness, Scattering Potential, and Statistical Properties
11.2 Specular X-Ray Reflection
11.3 Non-Specular X-Ray Reflection
11.3.1 General Approach
11.3.2 Resonant Diffuse Scattering
11.3.3 Dynamical Scattering Effects
11.3.4 Non-Coplanar X-Ray Reflection
11.4 Interface Roughness in Surface-Sensitive Diffraction Methods

Part IV X-Ray Scattering by Laterally Structured Semiconductor Nano-Structures

12 X-Ray Scattering by Artificially Lateral Semiconductor Nanostructures
12.1 The Scattering Potential and the Structure Amplitude
12.2 Kinematical Theory
12.3 Dynamical Theory
12.4 Distorted Wave-Born Approximation for Grazing-Incidence Diffraction
12.5 Distorted Wave-Born Approximation for X-Ray Diffraction
12.6 Determination of the Lateral Superstructure
12.6.1 Grating Period and the Etching Depth
12.6.2 Reciprocal-Space Mapping
12.6.3 Orientation of the Grating Pattern
12.6.4 Grating Shape
12.7 Superlattice Surface Gratings
12.8 Shape and the Morphological Set-Up of a Multilayer Grating
12.9 Non-Epitaxial Gratings

13 Strain Analysis in Periodic Nanostructures
13.1 Strain Analysis in Surface Gratings
13.1.1 Simple Strain Models
13.1.2 Full Quantitative Strain Analysis by Coupling Elasticity Theory and X-Ray Diffraction
XVI Contents

13.2 Strain in Superlattice Surface Gratings 329
13.3 Quantum Dots .. 332
13.4 Strain Evolution Due to Embedding 334
 13.4.1 Strain Optimization and Strain-Induced Band Gap
 Engineering .. 340
 13.4.2 Strain-Induced Morphological Ordering in Buried
 Gratings .. 343
13.5 Induced Strain Gratings in Planar Structures 345
 13.5.1 Periodic Dislocation Network in Wafer-Bonded Samples
 345
 13.5.2 Dynamical Strain Gratings 350

14 X-Ray Scattering from Self-Organized Structures 353
14.1 Self-Organizing Growth Modes 353
14.2 Small-Angle X-Ray Scattering from Self-Organized
 Nanostructures ... 357
 14.2.1 Short-Range-Order Model 359
 14.2.2 Long-Range-Order Model 362
 14.2.3 Two-Dimensional Gas of Objects 364
14.3 X-Ray Diffraction from Self-Organized Nanostructures 368

References .. 389

Index ... 403
High-Resolution X-Ray Scattering
From Thin Films to Lateral Nanostructures
Pietsch, U.; Holy, V.; Baumbach, T.
2004, XVI, 408 p. 389 illus., Hardcover
ISBN: 978-0-387-40092-1