Stomach

Scott A. Hundahl, John S. Macdonald, and Stephen R. Smalley

Neoplasms of the stomach encompass both benign and malignant tumors, with more than 95% of the latter consisting of adenocarcinomas. Until approximately 1980, gastric cancer was the most common solid organ tumor in the world, and today it is eclipsed only by lung cancer in incidence and mortality.¹

This chapter addresses the classification, epidemiology, staging, and evidence-based treatment of gastric adenocarcinoma. Less-common gastric neoplasms, such as gastrointestinal stromal sarcomas (GIST), carcinoid tumors, and gastric lymphomas, are comprehensively reviewed in other chapters. Despite the necessary emphasis on new findings and improved treatments, background items of historical significance are also mentioned, lest we underappreciate previous work and the difficulty of progress.

Gastric Adenocarcinoma

Classification

Borrmann first characterized gastric carcinoma on the basis of gross characteristics in 1926, based on a review of 5,000 European cases.² He described four macroscopic tumor growth patterns: (1) type I, nodular polypoid tumor without ulceration and usually with a broad base; (2) type II, a fungating, exophytic, circumscribed tumor with defined sharp margins, devoid of ulceration except at its dome; (3) type III, an ulcerating tumor with a penetrating, infiltrating ulcer base; (4) type IV, a diffuse thickening of the gastric wall without a discretely marginated mass or ulceration, corresponding to the “leather bottle,” nondistensible stomach termed limitis plastica. Still used today, the Borrmann classification has proved useful in guiding surgical treatment, especially the extent of gross tumor clearance necessary for reliable negative margin resection.

The histology of gastric adenocarcinoma falls into two distinct subtypes, first identified by the Finnish authors Jarvi and Lauren in 1951 and refined in 1965³:¹ (1) intestinal type and (2) diffuse type. Intestinal-type cancers [Figure 41.1], often found in association with chronic atrophic gastritis and intestinal metaplasia, demonstrate gland formation and locally/progressively invade the gastric wall. Diffuse-type cancers [Figure 41.2] present as a sheet of discohesive individual cells that diffusely spread within the gastric wall, often spreading considerable distances from the site of origin. Diffuse tumors elicit a particularly brisk scirrhous proliferation of fibroblasts.

Histoepidemiologically, gastric adenocarcinomas generally sort into three broad patterns, based on simple combinations of Lauren type and location within the stomach.⁵

1. Intestinal-type tumors arising in the antrum or antral–corpus junction [Helicobacter pylori associated]
2. Diffuse-type cancers involving the corpus [H. pylori associated]
3. Intestinal-type cancers of the gastroesophageal junction

In regions of high gastric cancer incidence, approximately two-thirds of the incident cancers are of the intestinal-antral type associated with chronic Helicobacter pylori infection, multifocal atrophic gastritis, and intestinal metaplasia. This process usually begins at the lesser curve and the antral–corpus junction, and this is the most frequent site of cancer in high-incidence regions of the world. In such areas, most of the remaining cancers are also associated with H. pylori infection, but not intestinal metaplasia, and afflict younger age groups (usually those under 50 years). In this presentation, the cancer is of the diffuse type involving the body of the stomach and is associated with a brisk mucosal inflammatory infiltrate related to the H. pylori infection. Helicobacter pylori (see below) is therefore associated with both the antral-intestinal and the corpus-diffuse patterns.⁶ Gas- troesophageal junction (GE junction) tumors, on the other hand, tend to be associated with Barrett’s metaplasia of the esophagus and are proportionately far less common in high-incidence regions but are an increasingly frequent subtype in low-incidence areas.

For the sake of completeness, a somewhat less common fourth subset of gastric cancer is also seen: intestinal-type cancers of the corpus associated with chronic autoimmune gastritis, G-cell hyperplasia, and achlorhydria. This less-common subtype is usually seen in Northern Europeans.⁶

Before the development of antral-intestinal-type adenocarcinoma, antecedent histologic changes occur that can be viewed as tissue markers along the multistep path to frank neoplasia. Multifocal atrophic gastritis, literally a thinning, chronic inflammation of the gastric mucosa, is generally thought to be the result of decades of superficial gastritis associated with H. pylori infection [Figure 41.3] and other factors. So-called intestinal metaplasia [Figure 41.4] is the characteristic histologic feature of atrophic gastritis, and it occurs in two forms: (1) complete type intestinal metaplasia and (2) incomplete type intestinal metaplasia. Complete type intestinal metaplasia [Figure 41.4] closely duplicates the mucosa of the small intestine, with small intestine-like mucin-negative
FIGURE 41.1. Intestinal-type cancer. Hematoxylin and eosin (H&E). (Courtesy of Alfredo Asuncion, M.D.)

FIGURE 41.2. Diffuse-type cancer. H&E. (Courtesy of Alfredo Asuncion, M.D.)

FIGURE 41.3. Helicobacter pylori [small rodlike organisms in crypt]. Warthin–Starry stain. 100x. (Courtesy of Alfredo Asuncion, M.D.)

FIGURE 41.4. Intestinal metaplasia. H&E. Goblet cells, not normally seen in gastric mucosa, are numerous. (Courtesy of Alfredo Asuncion, M.D.)
absorptive cells and Alcian blue-positive, sialomucin-positive goblet cells. This process usually begins at the antral–corpus interface, especially along the lesser curve near the incisura. When antral-intestinal metaplasia is still of limited area and spotty, and the remaining oxyntic gastric mucosa is still pumping out acid normally, peptic ulceration of affected areas is frequent, hence explaining the historical association between gastric ulcer and gastric cancer. Incomplete intestinal metaplasia represents a more-advanced process in which absorptive enterocytes disappear in favor of columnar, brush-border-free, color-like cells with prominent mucous droplets and sulfomucins. Additionally, in incomplete intestinal metaplasia, Paneth cells are absent. In both types of intestinal metaplasia, cells produce enzymes not normally present in the stomach, including sucrase, aminopeptidase, disaccharidas, and, most importantly, alkaline phosphatase. The latter enzyme may be used to grossly stain and map the distribution of intestinal metaplasia within the stomach ex vivo.

Of the many alternative histologic gastric cancer classification schemes based on morphology, such as the World Health Organization Classification, or histogenesis-based classifications such as that of Mulligan and Rember, degree of differentiation such as Broder’s classification and the Nagayo-Komagome classification, or classifications that include growth pattern such as the Ming classification, none has proven of more “beyond-TNM” prognostic value than the Goseki classification. In the Goseki scheme, degree of tubular differentiation (well versus poor) is combined with mucin staining pattern (mucin rich versus mucin poor) to divide gastric adenocarcinomas into four groups. Although of apparent prognostic value, it has yet to find widespread use.

Epidemiology

In incidence and mortality, gastric cancer ranks as the second most common cancer in both males and females. In almost all registries, gastric cancer incidence for males is approximately twice that of females. Figure 41.5 depicts widespread variation in gastric cancer incidence in various population-based registries around the world. The registries selected for this figure reflect those with both high numbers of incident cases and relatively low death-certificate-only cases, which suggests good case-finding. The highest world standard incidence rate (91.3 cases per age-standardized 100,000) is reported from Yamagata, Japan. The lowest rates are reported from Bangkok, Thailand, as well as from England, Australia, and the United States. Age-adjusted gastric cancer incidence rates are declining in most countries throughout the world. The age adjustment of such rates tends to obscure the fact that, as a result of population growth and aging, the numerical burden of gastric cancer cases is actually expected to increase by 30% in 2010, to approximately 1 million cases.

Unifying a vast body of epidemiologic, pathologic, and biologic research, Correa in 1975 proposed a multistep, multicausal model of gastric carcinogenesis, which he refined in 1988 and again in 1992. Chronic gastric mucosal irritation, particularly that associated with the gastric mucosal bacterium Helicobacter pylori, initiates a superficial gastritis, which, especially in a setting of a diet rich in salt-preserved foods and high NaCl intake, progresses to atrophic gastritis and intestinal metaplasia (first the complete type and subsequently the higher-risk incomplete type). This transformation, and the subsequent march to dysplasia and cancer, is facilitated by diminished oxyntic acid output, increasing gastric pH, bacterial growth, and high-nitrate-containing diet. In such an intragastric environment, dietary nitrates are converted to carcinogenic N-nitroso compounds. Many other carcinogenic compounds, such as polycyclic aromatic hydrocarbons, are also implicated. Certain ingested compounds, such as vitamin C, can interrupt this process. Additional risk factors for epidemic gastric cancer include smoking and a diet deficient in fresh fruits, vegetables, and antioxidants. Blood group A, gastric ulcer, ionizing radiation, family history, and previous gastric resection are also associated risk factors.

A vast body of data now supports Helicobacter pylori as a key factor in epidemic gastric cancer, and the International Agency for Research on Cancer (IARC) has recognized it as a human carcinogen with both direct and indirect effects. Strains containing the cagA gene appear more dangerous. Summarizing a large body of surveillance data, Parkin and colleagues observe that more than 80% of individuals in developing countries are infected with H. pylori. The figure for developed countries is approximately 50%. An odds ratio for H. pylori and gastric cancer of 2.1 has been estimated. Based on this, Parkin and colleagues estimate that 42% of the world total gastric cancer cases can be attributed to the impact of infection with this bacterium.

Decades-long H. pylori infection, usually starting in childhood, begets superficial gastritis and chronic atrophic gastritis and intestinal metaplasia, which, once established, usually persists even after the H. pylori infection has disappeared because of the resulting achlorhydric gastric luminal environment (the bacterium requires an acid environment to live). Atrophic gastritis and intestinal metaplasia were once believed to be irreversible. This does not appear to be entirely true, however. The pharmacologic elimination of H. pylori
TABLE 41.1. Hereditary Syndromes in Gastric Cancer.

<table>
<thead>
<tr>
<th>Well-recognized association:</th>
<th>Hereditary diffuse gastric cancer syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-cadherin germ-line mutation syndrome</td>
<td>Hereditary non-polyposis colon cancer (HNPCC)</td>
</tr>
<tr>
<td>Li–Fraumeni syndrome (p53 mutations)</td>
<td>Possible, weak association:</td>
</tr>
<tr>
<td>Familial adenomatous polyposis (FAP) syndrome</td>
<td></td>
</tr>
</tbody>
</table>

along with favorable dietary intervention has led to documented regression of atrophic gastritis and intestinal metaplasia. 68–71 Unfortunately for the purpose of cancer prevention, however, a (somewhat underpowered) Chinese \textit{H. pylori} elimination trial in Fujian Province has recently documented a significant decrease in gastric cancer incidence only in participants without preexisting intestinal metaplasia and no significant decrease when such metaplasia was already established. 66 Ongoing \textit{Helicobacter} eradication trials include one in Venezuela, 64 and one in Japan, the Japanese Intervention Trial on \textit{H. pylori}. 67

Molecular Biology

The genetics and molecular biology of gastric cancer continue to be elucidated. With each clue to understanding the biology of gastric neoplasia, both targeted prevention and targeted therapy seem more and more feasible. Between 8% and 10% of gastric cancer cases appear to be associated with a hereditary component, and these cases provide significant clues. 68 Dominant inheritance patterns and familial clusters have certainly been documented. 68–71 Notably, Napoleon Bonaparte’s family was afflicted by hereditary gastric cancer, and this (rather than arsenic poisoning) appears to have caused his death. 72

Table 41.1 summarizes recognized hereditary conditions associated with gastric cancer. 73 Perry Guilford and colleagues were among the first to describe germline \textit{E-cadherin} mutations in a Maori kindred afflicted with diffuse-type gastric cancer, 52, 74 and such mutations have also been described in African-American and European kindreds. 52, 75 Gastric cancer is one of the neoplasms associated with the hereditary nonpolyposis colon cancer (HNPCC) syndrome, and such HNPCC-associated cancers are almost exclusively of the intestinal type. 43, 76 It is also overrepresented in those afflicted with germline p53 mutations, Li–Fraumeni syndrome. 50, 77 Asian reports of association of gastric cancer with familial polyposis coli (FAP) syndrome 78 have not been reported for other populations, 79 and the relationship remains controversial.

Table 41.2 summarizes genetic and molecular abnormalities frequently described in sporadic cases of gastric carcinoma. Immortalizing telomerase activity is commonly noted in advanced gastric cancers, but not in surrounding normal gastric mucosa, 80 and is associated with a poor prognosis. 81 Inactivation of the p53 gene and abnormal expression has been detected in more than 60% of gastric cancers. 82 In diffuse-type tumors, \textit{E-cadherin} expression is reduced in as many as 92% of tumors, compared to adjacent normal tissue. 83 Reduced expression of alpha-catenin, which forms intracytoplasmic complexes with the cadherins, is noted in 56% of tumors. 84 Overexpression of the MET gene that encodes a tyrosine kinase receptor for hepatocyte growth factor (HGF) is seen in approximately half of gastric cancers and tends to be associated with poor prognosis. 85–87 Loss of trefoil peptide, the immobilization of which relates to repair of gut mucosa, 88 occurs in approximately half of gastric carcinomas, especially the intestinal type. 89–92 Proliferation of gastric cancer cell lines is decreased by this peptide. 93 Expression tends to be decreased in intestinal metaplasia. 94 This family of peptides appears to play a key role in the multistep progression to gastric cancer. 95 Epidermal growth factor (EGF) is detected in more than 50% of gastric cancers and epidermal growth factor receptor in approximately a third, and these have been associated with invasiveness and poor prognosis. 96–99 Subtypes \textit{c-erb-B1} and \textit{-B2 (HER-2/neu)} have also been detected 100 in up to a third of cases, and the latter has similarly been associated with poor prognosis. 100–102 Similarly, fibroblast growth factor is expressed in 54% to 70% of gastric cancers. 103, 104 Cyclin D is another protein variably overexpressed in gastric cancer, with incidence of overexpression approximately 20% to 30% in sporadic cases, 100–102 and possibly more in familial tumors. 109 \textit{COX-2} is not normally expressed in gastric mucosa but is in tumors, 110–113 in precancerous lesions, 111 and inflammatory states (especially those induced by \textit{H. pylori}). 111, 112, 113 In tumors, its presence seems to correlate with angiogenesis and invasiveness, and it tends to inhibit apoptosis. 115–117 For these reasons, and observational evidence of possible chemoprevention by aspirin, 118–121 \textit{COX-2} inhibitors have been proposed as chemopreventive agents in gastric cancer. 122

Differences among molecular and genetic patterns for gastrointestinal cancers can also provide clues to etiology and therapy. Ras proto-oncogene mutations, which are frequent in colon cancer, are infrequent in gastric cancer. 123 Paracrine-like interactions between gastric cancer and fibroblasts have also been reported, particularly those involv-

TABLE 41.2. Frequent genetic and molecular abnormalities in sporadic gastric cancer.

<table>
<thead>
<tr>
<th>Genetic Abnormality</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telomerase expression</td>
<td>85% of advanced tumors, poor prognosis</td>
</tr>
<tr>
<td>E-cadherin</td>
<td>In 92%, downregulation or mutation</td>
</tr>
<tr>
<td>p53 mutations</td>
<td>More than 60% of tumors</td>
</tr>
<tr>
<td>Trefoil peptide, TFF-1 (sP2)</td>
<td>Loss in 50% of gastric tumors, and decrease in intestinal metaplasia</td>
</tr>
<tr>
<td>MET, c-met</td>
<td>Overexpression in approximately 50%, a marker for poor prognosis</td>
</tr>
<tr>
<td>Epidermal growth factor (EGF)</td>
<td>Expression in more than 50% of advanced cancers</td>
</tr>
<tr>
<td>Fibroblast growth factor</td>
<td>70% expression, especially undifferentiated tumors</td>
</tr>
<tr>
<td>Cyclooxygenase 2 (COX-2)</td>
<td>Expressed frequently in tumors and precancerous lesions, but not in normal mucosa</td>
</tr>
</tbody>
</table>
ing transforming growth factor-β (TGF-β) and hepatocyte growth factor (HGF) as well as other factors. Such tissue interactions appear to impact on the proliferation of neoplastic and preneoplastic cells.

Diagnosis

Data from a registry-based American College of Surgeons Patient Care Evaluation Study nicely documents the presenting symptoms of patients with gastric cancer: weight loss in 62%, abdominal or epigastric pain in 52%, nausea in 34%, anorexia or early satiety in 32%, frank dysphagia in 26%, and melena in 18%. Specific signs of gastric cancer are generally associated with more-advanced disease; these include palpable epigastric mass, ascites, left supraclavicular adenopathy, and Blummer’s shelf palpable on rectal examination.

In low-incidence countries, fecal occult blood testing, when positive, triggers endoscopic investigation of both upper and lower gastrointestinal (GI) tract; this can lead to a diagnosis of early disease. Patients in defined higher-risk groups (e.g., positive family history or previously documented intestinal metaplasia) are increasingly being screened by surveillance endoscopy, and this, too, leads to diagnosis of more-localized disease. Overall in the United States and most low-incidence regions, stage IB or less (see following for staging) disease is detected in fewer than 23% of cases.

In high-incidence countries, such as Japan, mass screening with upper GI contrast studies and endoscopy have proven successful in shifting stage distribution to lower stages, with measurable improvement in overall survival rates (level of evidence, II-1). Pepsinogen I/II ratio of less than 2.0 (a marker of loss of oxyntic mucosa and the extent of intestinal metaplasia) has also been used as a mass screening tool. In Japan, where mass screening has been established as national policy, the percentage of early gastric cancer cases among screening program participants is a staggering 74%. Unfortuately, such mass screening is far less feasible in the poorer, less-developed nations of the world where gastric cancer tends to occur more frequently.

Extent-of-Disease Evaluation

Most patients undergo upper endoscopy as part of their initial evaluation. Key information gleaned from this examination includes tumor location and extent of mucosal involvement, distance from the esophagogastric junction, and Borrmann type.

Endoscopic ultrasound examination (EUS), using a 7.5- to 12-MHz transducer at the end of an endoscope, offers a reliable means of preoperatively assessing the depth of tumor penetration of the wall and a fairly reliable means of assessing for gross lymph node enlargement. Concordance of EUS and pathologic T stage in most series is 85% or better. Endoscopic ultrasound examination appears more accurate than even helical computed tomography. CT scanning of the abdomen and chest should be performed in most cases. It is very helpful in detecting distant metastatic disease, extraregional adenopathy, and signs of locally-advanced disease unlikely to be removed to negative margins with up-front surgery. Helical CT, particularly if enhanced by the triphasic water-filling scanning technique, appears to be more sensitive than conventional CT.

Positron emission tomography (PET) with [18F]fluoro-deoxyglucose (FDG) and PET-CT fusion scanning have enhanced detection of distant metastases in a variety of cancers. Unfortunately, gastric adenocarcinoma is not as suited for PET scanning as other tumors. Primary tumor uptake is seen in only approximately 75% of cases, and the technique is less sensitive than CT for detecting nodal disease. Neither mucus-containing tumors nor diffuse-type scirrhous tumors image well. Furthermore, different regions of the normal stomach have different uptake of FDG, thus complicating image interpretation. PET does appear to be somewhat helpful in detecting certain distant organ metastases, however.

Laparoscopy and minilaparotomy represent invasive procedures, but can accurately detect serosal spread and small peritoneal implants, as well as extraregional nodal disease and small hepatic metastases. In a recent large series, laparoscopy outperformed EUS and CT in detecting signs of unresectability and/or extraregional metastases. It consistently outperforms CT. In a recent series, laparoscopy proved more accurate than peritoneal fluid cytology in detecting peritoneal implants. Lack of a prospective randomized trial showing resultant outcome differences makes inclusion of laparoscopy in pretreatment staging a level II-1 recommendation, however.

Staging and Prognosis

Since 1987, the American Joint Committee on Cancer (AJCC) and the Union Internationale Contra le Cancer (UICC) systems for the staging of cancer have been identical. Fifth and sixth edition UICC/AJCC TNM staging for adenocarcinoma of the stomach is summarized in Table 41.3. This TNM staging system differs from previous versions with respect to nodal classification. Formerly, nodal classification was based on anatomic location of lymph nodes. In the current fifth-sixth edition system, nodal staging is based on the number of pathologically involved nodes, thus (at least partially) addressing the thorny issue of stage migration related to extent of lymphadenectomy.

The staging of tumor depth, or T staging, for this site has not changed since 1988. The reader should be aware that T staging for this site differs from that of colorectal cancer. Invasion of the lamina propria or submucosa, but not the muscularis propria of the gastric wall, is deemed T1 disease. Invasion of the muscularis propria or a breach of the muscularis propria without a serosal breach is deemed T2 disease. A tumor may extend into the lesser omentum or the greater omentum adjoining the stomach and, provided the serosa (i.e., visceral peritoneum) is not breached, the tumor is deemed T2. A T3 tumor breaches the serosa, thus placing the patient at increased risk of peritoneal dissemination. Microscopic breach of the serosa can be difficult for the pathologist to detect, but prognostically, presence or absence of such penetration has great impact (e.g., one recent study from Hong Kong reports 5-year survival of 64% versus 10% based on this feature alone). A T4 tumor invades adjacent structures such as spleen, transverse colon, liver, diaphragm, pancreas, abdominal wall, adrenal gland, kidney, small intestine, or retroperitoneum. Intramural extension to the duodenum or the esophagus is not considered invasion of an adjacent structure, and a tumor exhibiting such intramural extension is
6 nodes is considered N1 disease and metastasis in 7 to 15 metastasis is considered N0 disease. Nodal metastasis in 1 to system is by number of involved nodes. Absence of nodal in the stomach, and retroperitoneum.

TABLE 41.3. UICC/AJCC Staging for Gastric Adenocarcinoma, 6th ed.

| Primary tumor (T) | Nodal staging based on the depth of greatest invasion, as described above.157

<table>
<thead>
<tr>
<th>Regional lymph nodes (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
</tr>
<tr>
<td>N0</td>
</tr>
<tr>
<td>N1</td>
</tr>
<tr>
<td>N2</td>
</tr>
<tr>
<td>N3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distant metastasis (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mx</td>
</tr>
<tr>
<td>M0</td>
</tr>
<tr>
<td>M1</td>
</tr>
</tbody>
</table>

^aA tumor may penetrate the muscularis propria with extension into the gastric or gastrohepatic ligaments, or into the greater or lesser omentum, without perforation of the visceral peritoneum covering these structures. In this case, the tumor is classified T2. If there is perforation of the visceral peritoneum covering the gastric ligaments or the omentum, the tumor should be classified T3.

^bThe adjacent structures of the stomach include the spleen, transverse colon, liver, diaphragm, pancreas, abdominal wall, adrenal gland, kidney, small intestine, and retroperitoneum.

^cIntramural extension to the duodenum or esophagus is classified by the depth of the greatest invasion in any of these sites, including the stomach.

^dA designation of pN0 should be used if all examined lymph nodes are negative, regardless of the total number removed and examined.

<table>
<thead>
<tr>
<th>Stage Grouping</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>IA</td>
</tr>
<tr>
<td>IB</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>IIIA</td>
</tr>
<tr>
<td>IIIB</td>
</tr>
<tr>
<td>IV</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

^eStaging system derived from a set of “General Rules for Gastric Cancer Study,” first published in 1963 and revised many times since.159 A complete version of the 12th edition of this staging system, usually referred to as the “General Rules,” has been published in English, complete with color tables and diagrams.159,160 The T stages in this system are similar to those in the UICC/AJCC system, but it is otherwise different. Nodal staging differs considerably, with node-level definitions ranging from (regional) N1 and N2 nodal levels to (generally considered extraregional) N3 and N4 levels. The specific definitions for such levels vary according to location of tumor within the stomach (e.g., proximal third, middle third, distal third). The system includes macroscopic stages for N3 disease, and most regard this extent of nodal disease as incompatible with survival following surgery treatment alone; hence, any N3 case is classified as stage IV.

Nodal data for prognostic estimates in large databases encompass hematoxylin and eosin (H&E) staining of nodes. Methods of nodal analysis such as immunohistochemistry or polymerase chain reaction analysis enhance sensitivity to a degree far beyond H&E analysis. Prognostic implications for nodes positive only by such methods are likely different, and to a degree that remains controversial.

TABLE 41.4. TNM staging and relative survival for U.S. cases treated by gastrectomy, 1985–1996 (n = 50, 169).
description of the tumor (e.g., early gastric carcinoma type or, if more advanced, Borrmann type), but such description does not directly impact on final stage assignment. Peritoneal metastases are described separately [e.g., P0–P3], as are liver metastases (e.g., H0–H3). Other sites are described conventionally (i.e., M0, M1). In the overall “General Rules” staging matrix, limited peritoneal or hepatic disease is lumped in stage IVA, and other distant metastatic disease is classified as stage IVB. In this Japanese system, nodal disease that one might term extraregional in the UICC/AJCC classification (e.g., General Rules N3 disease), is incorporated into stage IIIA or IIIB if the depth of invasion is T1 or T2. Fortunately, it is fairly easy to translate from the General Rules staging to UICC/AJCC staging; provided accurate node counts are also available.

The Japanese General Rules system is of interest primarily because the extent of surgical lymphadenectomy in stomach cancer has been historically defined according to this system’s lymph node classification. Before the mid-1990s, the Japanese described an “R-level” the extent of lymphadenectomy according to the highest echelon of lymph node stations completely dissected by the surgeon. To avoid confusion with the UICC R-factor, which described completeness of resection, extent of lymphadenectomy was described as a “D-factor” after the 12th edition of the General Rules. In reviewing earlier literature in gastric cancer, one should be aware of the dual use of “R” terminology. Also, one should remember that the D-level description for level of lymphadenectomy is based on the Japanese nodal classification system (e.g., a lymphadenectomy is classified as D4 if all Japanese General Rules N1–N4 nodes are surgically removed, D3 if all N1–N3 but not all N4 nodes are cleared, etc.).

In the current AJCC/UICC staging system, the choice of numerical thresholds for nodal categories represents a point of ongoing controversy. A number of investigators have observed progressive decrease in survival with increasing number of involved nodes, with an apparent dropoff when more than 3 nodes are involved. Another dropoff when more than 6 nodes are involved has been observed. Involvement beyond 15 or 16 nodes has been observed to be largely incompatible with long-term survival. UICC/AJCC cutoffs are based on these observations, but it must be recognized that differences in the pathologic analysis of surgical specimens and differences in the extent of surgical lymphadenectomy can alter thresholds. A National Cancer Data Base (NCDB) report of 50,169 cases, all treated by gastrectomy, from 1985 through 1995, has documented that only 18% of U.S. gastric cancer cases have more than 15 nodes analyzed by the pathologist, as recommended by the AJCC for accurate nodal staging. The study further documented that stage migration related to nodal analysis persists in the United States despite the move to the fifth edition AJCC staging system based on based on number of nodes positive. Inadequate nodal analysis generated observed survival differences within assigned stage levels of up to 20%, and this was clearly related to the number of nodes analyzed. Nodal analysis beyond 15 nodes failed to generate any measurable enhancement in stage-stratified survival rates. Overall, 5-year relative survival was 28% and 10-year relative survival was 20%. Of the 10-year survivors in this series, 67% were node negative and 98% had 8 or fewer nodes involved. Despite documented variation in nodal sampling and analysis, however, assigning nodal stage categories based on the number of involved lymph nodes does appear to generate better prognostic estimates compared to previous versions of the UICC/AJCC system and the Japanese General Rules.

Recently, Kattan and colleagues at Memorial Sloan-Kettering Cancer Center in the United States have published a prognostic normogram based on multivariate analysis of 1,039 completely resected cases that somewhat corrects for inadequate nodal analysis in gastric cancer cases. Higher relapse risk is assigned when number of nodes analyzed is suboptimal. This potentially useful prognostic tool awaits validation in a separate cohort.

Residual disease after surgical treatment is not included in the UICC/AJCC TNM stage grouping matrix. It nonetheless represents a powerful, significant, independent prognostic factor. The UICC and AJCC code residual disease as R0 for none, R1 for microscopic residual, and R2 for macroscopic residual tumor. The completeness of resection R-factor should be specifically assigned and recorded for all patients undergoing surgical treatment.

Surgical Treatment

Historical Overview

In the United States, increasingly radical surgical approaches for gastric cancer during the 1940s and 1950s fell into disfavor in the late 1960s and 1970s with recognition of the sometimes considerable mortality such procedures entail, at least when performed on U.S. or European patients, given the level of patient selection and the level of postoperative care possible in that era.

Encouraged by generally lower surgical mortality rates and favorable 5-year survival rates, Japanese surgeons, led principally by Kajitani and colleagues, adopted a related, but distinct, approach: negative-margin gastrectomy (with initial gross margins guided by the Borrmann type of the tumor: 2 cm for exophytic nodular tumors and >5 cm for ulcerated infiltrating tumors or limitis plastica) combined with aggressive removal of regional/extraregional lymph nodes, omentum, and en bloc removal of the peritoneum lining of the floor of the omental bursa along with the pancreatic capsule and associated fatty nodal tissue (i.e., omentoburscetomy). Also, depending on tumor location, resection of contiguous organs such as tail of pancreas and spleen were advocated in an effort to better clear lymph node stations along the splenic artery and the splenic hilum. Reports from large cancer hospitals in Japan emphasized increasingly favorable stage-stratified results with such techniques, multiplied by screening-driven trends to earlier-stage diagnosis and improvement in overall survival.

Genuinely increased overall survival as a result of early diagnosis in Japan has been generally accepted as valid. However, claims by Japanese surgeons that more-radical surgical treatment was simultaneously generating better stage-for-stage results failed to uniformly win international acceptance, given the previous observation of high perioperative mortality accompanying U.S.-style radical surgery. By the late 1980s, however, remarkably low 30-day postoperative mortality rates reported from major Japanese institutions (e.g., 0.6% for expert institutions such as the National Cancer
TABLE 41.5. Prospective, randomized surgical trials.

<table>
<thead>
<tr>
<th>Lymphadenectomy trials</th>
<th>Inclusion criteria</th>
<th>N</th>
<th>Mortality/survival</th>
<th>Mortality/ survival</th>
<th>P value (survival)</th>
<th>General comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cape Town209,210</td>
<td>T1–3; N0–1; M0, age <75</td>
<td>43</td>
<td>0%/78% [3-year survival]</td>
<td>0%/76% [3-year survival]</td>
<td>n.s.</td>
<td>Solid design. Early closure due to poor accrual & inadequate power to detect.</td>
</tr>
<tr>
<td>Japanese D2 vs. D4 Trial209,210</td>
<td>Deep T2–T4</td>
<td>D2</td>
<td>0.8%/-</td>
<td>0.8%/-</td>
<td>ongoing</td>
<td>Ongoing trial. Immature with respect to survival.</td>
</tr>
<tr>
<td>French211</td>
<td>Antral tumor, M0</td>
<td>Subtotal Total</td>
<td>3%/48% [5-year survival]</td>
<td>1%/48% [5-year survival]</td>
<td>n.s.</td>
<td>Pioneering trial. Straightforward design.</td>
</tr>
<tr>
<td>Italian213,214</td>
<td>>6cm proximal margin possible all, but not mandated M0</td>
<td>Subtotal + D1 Total</td>
<td>1%/65% [5-year survival]</td>
<td>2%/62% [5-year survival]</td>
<td>n.s.</td>
<td>D2 recommended all, but not mandated. Straightforward design.</td>
</tr>
<tr>
<td>Hong Kong215</td>
<td>Antral >6cm margin, M0, age <75</td>
<td>D3</td>
<td>0%/1.51</td>
<td>3%/922 days median survival</td>
<td>0.04 days</td>
<td>Dual P values reported.</td>
</tr>
</tbody>
</table>

Center Hospital in Tokyo194 stimulated renewed interest in Japanese surgical methods. The much higher proportion of low-stage (early gastric cancer) patients in Japanese series, combined with marked differences between the Japanese staging system (see earlier) and the UICC/AJCC staging system, confounded direct international comparison of survival rates. The UICC and AJCC successfully standardized staging worldwide in 1987199,200 thus facilitating stage-stratified comparisons between Japanese and non-Japanese gastric cancer cohorts. Such comparisons revealed substantial stage-stratified survival differences126,201 prompting some to question whether gastric cancer in Japan was a “different disease” from that seen in Western industrial countries.202 Several retrospective analyses from Japan and elsewhere suggested that Japanese-style surgical treatment generated higher stage-stratified survival rates.203–207 With seemingly uniform UICC/AJCC staging, large apparent differences in stage-stratified survival rates were noted, with 5-year survival rates for each stage routinely much higher in the more radically treated Japanese cohorts.126,208 Such observations set the stage for prospective, randomized clinical trials addressing the following two surgical questions: (1) What is the optimal extent of lymphadenectomy (i.e., Japanese D1 versus Japanese D2) in the treatment of gastric cancer? and (2) Is routine total gastrectomy with or without extended node dissection more effective than simple subtotal gastrectomy? Results of these trials are summarized next and in Table 41.5.

Prospective, Randomized Trials of Surgical Treatment

The Cape Town South Africa Trial (1982–1986)209,210 of D1 Versus D2 Lymphadenectomy (termed Japanese R1 versus R2 at that time) was conducted between January 1982 and November 1986 by Dent and colleagues. Inclusion criteria included T1–T3, N0–N1 disease, no distant metastases, absence of significant comorbidity, and age less than 75 years. Patients from “remote areas” were excluded. For accurate staging, biopsies of celiac, common hepatic, hepatic nodes, and “any abnormal nodes” were taken for all patients. D2 (aka R2 dissection in the nomenclature of the time) was performed according to the Japanese methods described by Kajitani and Nakajima (i.e., removal of omentum, superior leaf of peritoneum on the transverse mesocolon, removal of the capsule of the pancreas, aka omentobursecomy, and celiac-based lymph node dissection).182,185 For the gastric resection itself, gross proximal clearance of 5 cm was required in both arms, and reconstructive techniques were specified. Over the period of study, 608 cases were reportedly evaluated; 403 were deemed surgical candidates, but only 43 (7% overall and 11% to poor accrual & inadequate power to detect).209,210

In-hospital mortality was zero for both groups. The trial did document increased operative time (P less than 0.005), increased blood transfusions (P less than 0.005), and longer hospital stay (P less than 0.05) for the D2 group. This single-institution trial was halted when single-institution accrual to adequate statistical power for the question was deemed unlikely.209,210

The French Subtotal Versus Total Gastrectomy Trial,211 by the French Association for Surgical Research, was conducted between 1980 and 1985 to address the potential value of routine total gastrectomy versus the higher mortality and morbidity associated with this procedure, as documented by 209,210
The Medical Research Council (MRC) Trial of Modified “D1” Versus Modified “D2” Lymphadenectomy was conducted in 1986 through 1995, by Cushieri, Fielding, Craven, Joy paul, and colleagues of the Surgical Co-operative Group. In this trial, a D1 procedure was defined in a manner at variance with the definition used by the JRSGC. For this trial, a D1 lymph node dissection was one in which only those lymph nodes within 3 cm of the tumor were removed [consistent with pre-1997 TNM definitions of N1 nodes]. The D2 procedure was defined as one in which TNM N2 nodes (i.e., “celiac, hepatoduodenal, retroduodenal, splenic, and retropancreatic nodes, depending on location of the tumor,” as well as perigastric nodes more than 3 cm from the tumor) were removed and the omental bursa resected [omentumobursaectomy]. Distal pancreaticosplenectomy was performed almost exclusively in the D2 group, and splenectomy in both groups, but more frequently in the D2 group. Eligibility was assessed at staging laparotomy. Prelaparotomy exclusions included age less than 20 and those with serious comorbid disease. All patients were assessed, at laparotomy, for the presence of peritoneal implants, liver metastases, and extraregional/periaortic adenopathy, particularly in the area of the left renal vein. Those with disease in these sites were excluded. Intraoperative peritoneal cytology was not used. Eligible cases were deemed to have TNM stage I–III disease with negative margins of resection and a proximal margin of at least 2.5 cm free of gross disease. Of 737 cases registered, 337 were deemed ineligible at staging laparotomy because of advanced disease, leaving 400 cases for intraoperative randomization. With median follow-up of 6.5 years, 5-year overall survival for the D1 group was 35% versus 33% for the D2 group (P = n.s.). Recurrence-free survival and disease-specific survival did not differ significantly. Unfortunately, splenic resection, performed more frequently in the D2 group, and pancreatic resection, performed almost exclusively in the D2 group, seriously impacted survival and proved to be independent predictors of poor survival. Complications and mortality were higher in the D2 group, and pancreaticosplenectomy appeared to be a powerful influence. The adverse impact of pancreaticosplenectomy, particularly pancreatectomy, somewhat confounded this trial with respect to the lymphadenectomy question.

The Dutch Trial of D1 Versus D2 Lymphadenectomy was conducted between August 1989 and July 1993 by surgeons participating in the Dutch Gastric Cancer Group. Eligibility criteria included age less than 85 years, adequate physical condition with no serious comorbid diseases, no previous cancer, no previous gastric surgery, and histologically confirmed gastric adenocarcinoma without evidence of distant metastases. Patients in both groups underwent distal or total gastrectomy according to the location of the tumor, with subtotal gastrectomy allowed if a proximal tumor-free margin of 5 cm could be achieved. At the onset of the trial, surgeons from 80 centers and 8 expert consulting surgeons were extensively instructed concerning Japanese-type surgical treatment according to Japan Research Society for Gastric Cancer (JRSGC) definitions and guidelines. Patients were randomized preoperatively to arrange for the intraoperative presence of an expert consultant surgeon for all D2 cases. A Japanese expert surgeon attended every case during the first 4 months of the trial. The D1 procedure involved removal of all JRSGC-defined N1 nodes, generally the...
perigastric nodes at stations 1–6 along the greater and lesser curvatures of the stomach, along with removal of the lesser and greater omentum. The D2 procedure involved omento-bursectomy [i.e., removal of greater and lesser omentum, the superior leaf of the transverse mesocolon and the capsule of the pancreas], frequent distal pancreatectomy and splenectomy (depending on tumor location), and removal of all JRSGC-defined N2 nodes at stations 7–12 [i.e., left gastric, celiac, common hepatic, proper hepatic, and splenic arteries and splenic hilar nodes]. Reconstruction following completion of the D2 node dissection was left to the local institutional surgeon, as was the postoperative care of the patient. Of the 1,078 cases randomized preoperatively, 82% were excluded for various reasons, most commonly, unavailability of a consultant reference surgeon (35 cases), poor physical condition, or lack of histologic confirmation of the diagnosis. Of the remaining 966 patients randomized and entered into the study, 285 had evidence of incurable/extraregional disease and were excluded; 711 deemed potentially curable underwent the randomly assigned treatment (i.e., D1 or D2 resection) with curative intent. The 380 cases in the D1 group and the 331 cases in the D2 group were well balanced with respect to age, gender, tumor location, and tumor depth. Eighty-nine percent of the cases in each group underwent apparent, pathologically confirmed, negative-margin resection. A slightly higher proportion of cases in the D2 group underwent total gastrectomy (38% versus 30% in the D1 group).

Among randomized cases, morbidity (25% versus 43%; \(P < 0.001 \)) and in-hospital mortality (4% versus 10%; \(P = 0.004 \)) were higher for the D2 group. With a median follow-up of 72 months, 5-year survival was 45% for the D1 group and 47% for the D2 group (\(P = n.s. \)). Pancreatic and splenic resection, performed mostly in the D2 group (mandatory for particular tumor subsites) were associated with significantly higher morbidity and mortality in this study. Restricting the analysis to patients who did not undergo pancreatic or splenic resection (a post hoc, selected analysis), survival was higher for the D2 group (59% for the D1 group versus 71% for the D2 group; \(P = 0.02 \)).

Overall, however, for those who indeed had a negative-margin resection deemed potentially curative, risk of relapse at 5 years was 43% for the D1 group versus 37% for the D2 group (difference between relapse rates was not significant). An 11-year follow-on report for this trial indicates that of the 89 cases with pathologic N2 disease, there were nine 10-year survivors, and 8 of the 9 were in the D2 group (\(P = 0.01 \)) for this post hoc analysis of the N2 subgroup. Overall survival at the 11-year mark is 31% versus 35% for D1 and D2, respectively (\(P = 0.53 \)). Post hoc subset analysis notwithstanding, overall, this trial fails to support routine D2 lymphadenectomy.

At the time, both the MRC trial and the Dutch Trial were initiated, pancreaticosplenectomy was still deemed a standard part of a Japanese-type operation for cancers involving the cardia. By the mid-1990s, Japanese recommendations with respect to pancreaticosplenectomy had shifted; Japanese surgeons were more likely to perform extended lymphadenectomy, particularly if performed in low-mortality centers (e.g., those in Japan and certain other expert centers) remains an open question.
Maruyama Program predictions have been assessed in Japanese, German, and Italian populations and found to be highly accurate. The tool is designed to be used by surgeons preoperatively or intraoperatively as a convenient means of rationally planning the optimal extent of lymphadenectomy for a given patient. Since the late 1980s, the program has been used in this way by surgeons at the National Cancer Institute Hospital in Tokyo and by many gastric cancer surgeons around the world. In an effort to expand use of this computerized tool, a CD-ROM with expanded case volume has been prepared. In a prospectively planned surgical analysis of a large multicenter U.S. trial of adjuvant postoperative chemoradiation in gastric cancer (SWOG 9008/Intergroup 0116; see followings) and optional sites), the extent of surgical treatment was specifically assessed in gastric cancer patients enrolled in SWOG 9008/INT 0116, a large U.S. adjuvant trial. (Updated data courtesy of Southwest Oncology Group.)

FIGURE 41.6. Impact of a surgical factor, Maruyama Index of Unresected Disease (MI), on overall survival for cases enrolled in SWOG 9008/INT 0116, a large U.S. adjuvant trial. (Updated data courtesy of Southwest Oncology Group.)

The Maruyama Index of Unresected Disease (MI) was defined (by the author, S.H.) as the sum of Maruyama Program predictions for those Japanese-defined regional node stations (stations 1–12) left in situ by the surgeon. Based on the Intergroup trial’s entry criteria, and the definition of MI, every case registered to INT-0116 could have had an MI of 0; this variable was under the surgeon’s control. Before any survival analysis in this trial, it was speculated that patients with MI less than 5 would have measurably superior survival. As shown in Figure 41.6, this indeed proved to be the case, with median overall survival for the MI less than 5 subgroup being 27 months versus 27 months (P = 0.005). By multivariate analysis, adjusting for treatment, T stage, and number of nodes positive, MI proved an independent predictor of survival (P = 0.0049). Data for disease-free survival are similar. The overall median Maruyama Index of Unresected Disease in this chemoradiation trial was 70 (range, 0–429), suggesting undertreatment. An effect for “dose of surgery,” as measured by MI, was also evident: median survival was 20 months for the highest MI quartile and 46 months for the lowest MI quartile (treatment-adjusted P = 0.002). In summary, by univariate analysis and by multivariate analysis, MI proved to be a strong and significant predictor of prognosis.

To further assess the utility of MI as a prognostic tool, the Dutch Trial has recently been reanalyzed. Blinded to survival, and eliminating cases with incomplete information, 648 of the 711 patients treated with curative intent had MI assigned. Median MI was 26 and varied according to UICC stage, nodal stratum, T stage, D level, and tumor involvement of overlapping sites, in that order. In contrast to D level, MI less than 5 proved an independent predictor of both overall survival and disease-free survival (P = 0.016, hazard ratio [HR] = 1.45, 95% confidence interval [CI] = 1.07–1.95) and relapse risk (P = 0.010, HR = 1.72, 95% CI = 1.14–2.60). As shown in Figures 41.7 and 41.8, a dose–response effect was also evident. This blinded analysis in this trial, it was speculated that patients with MI less than 5 would have measurably superior survival. As shown in Figure 41.6, this indeed proved to be the case, with median overall survival for the MI less than 5 subgroup being 27 months versus 27 months (P = 0.005). By multivariate analysis, adjusting for treatment, T stage, and number of nodes positive, MI proved an independent predictor of survival (P = 0.0049). Data for disease-free survival are similar. The overall median Maruyama Index of Unresected Disease in this chemoradiation trial was 70 (range, 0–429), suggesting undertreatment. An effect for “dose of surgery,” as measured by MI, was also evident: median survival was 20 months for the highest MI quartile and 46 months for the lowest MI quartile (treatment-adjusted P = 0.002). In summary, by univariate analysis and by multivariate analysis, MI proved to be a strong and significant predictor of prognosis.

To further assess the utility of MI as a prognostic tool, the Dutch Trial has recently been reanalyzed. Blinded to survival, and eliminating cases with incomplete information, 648 of the 711 patients treated with curative intent had MI assigned. Median MI was 26 and varied according to UICC stage, nodal stratum, T stage, D level, and tumor involvement of overlapping sites, in that order. In contrast to D level, MI less than 5 proved an independent predictor of both overall survival (P = 0.016, hazard ratio [HR] = 1.45, 95% confidence interval [CI] = 1.07–1.95) and relapse risk (P = 0.010, HR = 1.72, 95% CI = 1.14–2.60). As shown in Figures 41.7 and 41.8, a dose–response effect was also evident. This blinded analysis in this trial, it was speculated that patients with MI less than 5 would have measurably superior survival. As shown in Figure 41.6, this indeed proved to be the case, with median overall survival for the MI less than 5 subgroup being 27 months versus 27 months (P = 0.005). By multivariate analysis, adjusting for treatment, T stage, and number of nodes positive, MI proved an independent predictor of survival (P = 0.0049). Data for disease-free survival are similar. The overall median Maruyama Index of Unresected Disease in this chemoradiation trial was 70 (range, 0–429), suggesting undertreatment. An effect for “dose of surgery,” as measured by MI, was also evident: median survival was 20 months for the highest MI quartile and 46 months for the lowest MI quartile (treatment-adjusted P = 0.002). In summary, by univariate analysis and by multivariate analysis, MI proved to be a strong and significant predictor of prognosis.

To further assess the utility of MI as a prognostic tool, the Dutch Trial has recently been reanalyzed. Blinded to survival, and eliminating cases with incomplete information, 648 of the 711 patients treated with curative intent had MI assigned. Median MI was 26 and varied according to UICC stage, nodal stratum, T stage, D level, and tumor involvement of overlapping sites, in that order. In contrast to D level, MI less than 5 proved an independent predictor of both overall survival (P = 0.016, hazard ratio [HR] = 1.45, 95% confidence interval [CI] = 1.07–1.95) and relapse risk (P = 0.010, HR = 1.72, 95% CI = 1.14–2.60). As shown in Figures 41.7 and 41.8, a dose–response effect was also evident. This blinded analysis in this trial, it was speculated that patients with MI less than 5 would have measurably superior survival. As shown in Figure 41.6, this indeed proved to be the case, with median overall survival for the MI less than 5 subgroup being 27 months versus 27 months (P = 0.005). By multivariate analysis, adjusting for treatment, T stage, and number of nodes positive, MI proved an independent predictor of survival (P = 0.0049). Data for disease-free survival are similar. The overall median Maruyama Index of Unresected Disease in this chemoradiation trial was 70 (range, 0–429), suggesting undertreatment. An effect for “dose of surgery,” as measured by MI, was also evident: median survival was 20 months for the highest MI quartile and 46 months for the lowest MI quartile (treatment-adjusted P = 0.002). In summary, by univariate analysis and by multivariate analysis, MI proved to be a strong and significant predictor of prognosis.

To further assess the utility of MI as a prognostic tool, the Dutch Trial has recently been reanalyzed. Blinded to survival, and eliminating cases with incomplete information, 648 of the 711 patients treated with curative intent had MI assigned. Median MI was 26 and varied according to UICC stage, nodal stratum, T stage, D level, and tumor involvement of overlapping sites, in that order. In contrast to D level, MI less than 5 proved an independent predictor of both overall survival (P = 0.016, hazard ratio [HR] = 1.45, 95% confidence interval [CI] = 1.07–1.95) and relapse risk (P = 0.010, HR = 1.72, 95% CI = 1.14–2.60). As shown in Figures 41.7 and 41.8, a dose–response effect was also evident. This blinded analysis in this trial, it was speculated that patients with MI less than 5 would have measurably superior survival. As shown in Figure 41.6, this indeed proved to be the case, with median overall survival for the MI less than 5 subgroup being 27 months versus 27 months (P = 0.005). By multivariate analysis, adjusting for treatment, T stage, and number of nodes positive, MI proved an independent predictor of survival (P = 0.0049). Data for disease-free survival are similar. The overall median Maruyama Index of Unresected Disease in this chemoradiation trial was 70 (range, 0–429), suggesting undertreatment. An effect for “dose of surgery,” as measured by MI, was also evident: median survival was 20 months for the highest MI quartile and 46 months for the lowest MI quartile (treatment-adjusted P = 0.002). In summary, by univariate analysis and by multivariate analysis, MI proved to be a strong and significant predictor of prognosis.

To further assess the utility of MI as a prognostic tool, the Dutch Trial has recently been reanalyzed. Blinded to survival, and eliminating cases with incomplete information, 648 of the 711 patients treated with curative intent had MI assigned. Median MI was 26 and varied according to UICC stage, nodal stratum, T stage, D level, and tumor involvement of overlapping sites, in that order. In contrast to D level, MI less than 5 proved an independent predictor of both overall survival (P = 0.016, hazard ratio [HR] = 1.45, 95% confidence interval [CI] = 1.07–1.95) and relapse risk (P = 0.010, HR = 1.72, 95% CI = 1.14–2.60). As shown in Figures 41.7 and 41.8, a dose–response effect was also evident. This blinded analysis in this trial, it was speculated that patients with MI less than 5 would have measurably superior survival. As shown in Figure 41.6, this indeed proved to be the case, with median overall survival for the MI less than 5 subgroup being 27 months versus 27 months (P = 0.005). By multivariate analysis, adjusting for treatment, T stage, and number of nodes positive, MI proved an independent predictor of survival (P = 0.0049). Data for disease-free survival are similar. The overall median Maruyama Index of Unresected Disease in this chemoradiation trial was 70 (range, 0–429), suggesting undertreatment. An effect for “dose of surgery,” as measured by MI, was also evident: median survival was 20 months for the highest MI quartile and 46 months for the lowest MI quartile (treatment-adjusted P = 0.002). In summary, by univariate analysis and by multivariate analysis, MI proved to be a strong and significant predictor of prognosis.
reanalysis further supports the utility of the Maruyama computer program in customizing the extent of lymphadenectomy in individual gastric cancer cases according to the predicted extent of nodal disease. “Low Maruyama Index” surgery, which can easily be accomplished by using the Maruyama Program to prospectively plan lymphadenectomy for a given patient, appears to enhance survival [level II-1 evidence]. This conclusion has yet to be validated in a prospective, randomized trial.

Endoscopic Mucosal Resection of Selected T1 Cancers

In countries such as Japan, where the incidence of early gastric cancer (i.e., T1 tumor) is high, endoscopic mucosal resection (EMR) has emerged as a reasonable option for selected cases. In the traditional technique of endoscopic mucosal resection, submucosal injection of saline floats the small area of tumor-bearing mucosa off the underlying muscularis propria and the lesion is resected with a special cautery snare with hooks to preserve specimen orientation for margin analysis. The procedure can be technically challenging, but innovations such as use of incision endo-forceps, aspiration mucosectomy, use of a stabilizing distal magnetic anchor, or use of the double endoscope resection technique can facilitate its proper execution. Percutaneous traction assist techniques using small percutaneous ports and instrumentation can also facilitate the procedure, but percutaneous violation of the gastric lumen in such cases can risk unnecessary intraabdominal or port site tumor implantation. For this reason, laparoscopic resection for superficial T1 tumors suitable for EMR has been viewed with caution. Selection of cases suitable for EMR hinges on the absence of disease in the regional lymphatics. A combined series of 5,265 surgically treated T1 cases from the National Cancer Center Hospital and the Cancer Institute Hospital in Tokyo offers unsurpassed level II guidance. For intramucosal tumors, none of 1,230 well-differentiated cancers of less than 30 mm diameter, regardless of ulceration findings, were associated with metastases (95% CI, 0%–0.3%). Regardless of tumor size, none of 929 cancers without ulceration were associated with nodal metastases (95% CI, 0%–0.4%). For submucosal cancers, there was a significant correlation between tumor size larger than 30 mm and lymphatic-vascular involvement with an increased risk of nodal involvement. None of the 145 well-differentiated adenocarcinomas of less than 30 mm diameter without lymphatic or venous permeation were associated with nodal involvement, provided that the lesion had invaded less than 500 μm into the submucosa (95% CI, 0%–2.5%).

In an 11-year, 445 case series by Ono and colleagues from the National Cancer Center Hospital in Tokyo, there were no gastric cancer related deaths during a median follow up period of 38 months (3–120 months). Although bleeding and perforation occurred in 5%, there were no treatment-related deaths. For selected superficial T1 cancers, endoscopic mucosal resection performed by experienced personnel can generate superb results and can certainly be recommended, especially because local recurrences can be addressed with salvage gastrectomy [level II-2 evidence].

Adjuvant Treatments

Radiation and Chemoradiation

For locally advanced tumors deemed unresectable to negative margins, radiation and concomitant chemoradiation appear to make long-term disease-free survival possible for a small, but significant, subset of patients. In a Mayo Clinic series published in 1969, Moertel and colleagues documented rare long-term survivals with regional chemoradiation. In a follow-up prospective, randomized trial of radiation alone (n = 23) versus concomitant bolus 5-fluorouracil (5-FU) plus radiation (n = 25), mean survival was 13 months versus 6 months, favoring combined therapy (P < 0.05) and 5-year survival was 12% versus 0%. In a follow-up study, the Gastrointestinal Tumor Study Group randomized 90 eligible cases to receive either combination chemotherapy alone or concomitant chemoradiation with further, follow-on chemotherapy. Early nutritional and myelosuppressive complications rendered initial survival of the chemoradiation arm inferior, but with minimum 5-year follow-up, survival was significantly higher for the chemoradiation arm, with 16% alive disease free compared to 7% among those treated with chemotherapy alone (P < 0.05).

For cases treated surgically, historical pattern-of-failure data from clinical, operative second look, and autopsy sources documented that approximately 60% of node-positive and/or transserosal cancers (T3 or more) recur in regional nodes, tumor bed, or anastomosis, with 20% of tumors recurring only locoregionally. Such data compellingly invited application of locoregional radiation or chemoradiation as an adjuvant to surgical treatment. Figure 41.9 depicts a early proposal by Gunderson and Sohn for a radiation treatment field encompassing frequent locoregional areas of failure, based on Wangensteen’s University of Minnesota reoperative series.

Between 1991 and 1998, the Southwest Oncology Group and the Gastric Intergroup conducted SWOG 9008/INT 0116, a two-armed prospective randomized trial of postoperative adjuvant chemoradiation versus surgery alone in patients with completely resected adenocarcinoma of the stomach and esophagogastric junction. Eligibility criteria for this trial specified complete negative-margin resection, registration 20–41 days postoperatively, adequate organ function, good performance status (i.e., Zubrod 1 or 2), postoperative caloric intake of more than 1,500 kcal per day, and fourth edition TNM stage IB or higher, distant-metastasis-negative, disease. Of 603 cases accrued to the study, 46 (8%) were ineligible, leaving

TABLE 41.6. Patterns of failure after “curative” resection of gastric cancer.

<table>
<thead>
<tr>
<th>Pattern of Failure</th>
<th>Clinical</th>
<th>Reoperation</th>
<th>Autopsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Locoregional</td>
<td>38</td>
<td>67</td>
<td>80–93</td>
</tr>
<tr>
<td>B. Peritoneal seeding</td>
<td>23</td>
<td>41</td>
<td>30–50</td>
</tr>
<tr>
<td>- Localized</td>
<td>–19</td>
<td>–22</td>
<td></td>
</tr>
<tr>
<td>- Diffuse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Distant metastases</td>
<td>52</td>
<td>22</td>
<td>49</td>
</tr>
</tbody>
</table>

Modified from Small et al. by permission of International Journal of Radiation Biology Oncology Physics.
Overall survival was 35 months median for recently updated with more than 6 years of median follow-up chemoradiation versus 26 months for surgery alone \([P = 0.006, \text{hazard ratio}, 1.31 (1.08–1.61)]. \) Disease-free survival was also significantly different at 30 months median for chemoradiation and 19 months for surgery alone \([P < 0.001, \text{hazard ratio}, 1.52 (1.75–1.85)]. \)

Exploratory subgroup analyses for INT-0116 were recently performed for six variables: gender, T stage, N stage, gastric subsite, D level of dissection, and diffuse versus intestinal histology. Positive treatment effects were seen in all subsets. A possible treatment interaction was seen, with diffuse-type histology cases doing poorly with therapy, but after adjusting for multiple testing, this result was not significant.273

The likely burden of unresected locoregional disease in this trial is problematic.274 Less than D1 lymphadenectomy, considered suboptimal in the opinion of most experts, was performed in 54% of the cases.246,272 As noted in the previous section, cases with Maruyama Index of Unresected Disease (MI) less than 5 enjoyed significantly greater survival [median overall survival for the MI less than 5 subgroup, 91 months versus 27 months; \(P = 0.005 \)], and this was an independent predictor of survival.246 By D level, median survival was 27 months for D0 lymphadenectomy and 48 months for D2 lymphadenectomy, but only 10% of cases registered to this trial underwent D2, and this difference was not significant.246 Surgical undertreatment may have played a role in making this a positive trial.274

On the basis of INT 0116, adjuvant chemoradiation has been recommended in the United States for all patients with stage IB or greater, M0 disease (i.e., locoregional disease), provided they meet criteria for adequate caloric intake (more than 1,500 cal/day), good organ function, and good performance status.272 Do all patient subgroups really benefit? The power to detect differing treatment effect in various subgroups in this trial [especially the stage IB subset] is low. Statistical tests of treatment interaction with pathology and surgical variables have been negative, however.272 A cautionary note concerning the lower-risk, stage IB subgroup (i.e., patients with T2N0 or T1N1 disease) has been voiced.274

On the basis of this study, a new U.S. Intergroup trial, examining postoperative etoposide, cisplatin, and 5-FU (ECF) chemotherapy before and after radiation with continuous infusion 5-FU versus adjuvant treatment according to the INT-0116 protocol, is now under way, as well as other, similar trials in Europe.

Early Postoperative Intraperitoneal Chemotherapy

Japanese investigators have advocated intraperitoneal and intralymphatic installation of mitomycin C bound to microcarbon particles for some time.275 This treatment has been tested in an Austrian prospective randomized trial with negative results.276 Another Austrian prospective randomized trial of perioperative cisplatin has also been reported as negative.277 A Japanese trial of intraperitoneal OK-432 in addition to systemic therapy has also been negative.274 Phase II investigations of intraperitoneal therapy have also been conducted in the United States and elsewhere,279,280 with some investigators enthusiastic281 and some advising caution because of the associated morbidity.282

One positive prospective randomized clinical trial of perioperative intraperitoneal chemotherapy has been reported.283 Between 1990 and 1995, 248 Korean patients with biopsy-proven gastric cancer were randomized to surgery alone or surgery plus intraperitoneal chemotherapy consisting of 500 mg of mitomycin C administered preoperatively and intraperitoneally on the fourth and eighth days postoperatively. The intraperitoneal therapy was associated with a significant improvement in overall survival (median survival time, 34 vs. 20 months; \(P = 0.001 \), hazard ratio, 0.54 (0.35–0.82)).

Figure 41.10. Updated survival with more than 6 years median follow-up for INT-0116, a trial of postoperative adjuvant chemoradiation (upper curve) versus postoperative observation (see text). (Updated data courtesy of Southwest Oncology Group.272,273)
cancer without intraoperatively detected distant organ metastases were randomized intraoperatively following complete resection and minimum D2 lymphadenectomy to receive postoperative intraperitoneal mitomycin C and 5-FU versus surgery alone [Figure 41.11]. Stage I cases and those more than 70 years of age were excluded. Postoperative adjuvant treatment, delivered intraperitoneally through a Tenckhoff catheter, consisted of 10mg/m^2 mitomycin C delivered at body temperature in 1L dialysis solution on the first postoperative day, followed by 700mg/m^2 5-FU plus 50mEq sodium bicarbonate in 1L dialysis solution daily on days 2 through 5. No further antitumor treatment was administered during the disease-free interval. In-hospital mortality was 6.4% in the treated group versus 1.6% in the surgery-only group (P = n.s.). Among morbidities, intraabdominal bleeding (10% versus 1%; P = 0.002) and intraabdominal abscess/peritonitis (14% versus 4%; P = 0.008) were more frequent among treated cases. Follow-up consisted of regular physical examinations, but CT scans, paracentesis, etc., were initiated only at the discretion of the surgeon to confirm clinical findings. The initial report of this trial in 1998 reported a significant positive effect on survival only for stage III cases. A subsequent follow-up in 2001 reported significantly improved overall survival for the treatment group (54% versus 38%; P = 0.0278). Subset analysis revealed the benefit was enjoyed predominantly by those with fifth–sixth edition UICC TNM stage III (57% versus 23%; P = 0.0024) and stage IV (28% versus 5%; P = 0.0098) disease. Further subset analysis showed benefit for those with involved lymph nodes (46% versus 22%; P = 0.0017) and those with serosal invasion (52% versus 25%; P = 0.0004). Although this trial has yet to be duplicated, and there are some methodological criticisms, it has encouraged continued investigation of both perioperative intraperitoneal therapy and methods to decrease the associated morbidity. In the view of advocates, this trial constitutes level I evidence in favor of such intraperitoneal therapy.

Chemotherapy Without Radiation

A succession of meta-analyses concerning the value (or non-value) of systemic chemotherapy for gastric cancer have been conducted over the past decade. In 1993, Hermans et al. published a meta-analysis of 11 randomized trials of adjuvant chemotherapy, mostly involving treatment with 5-FU-based regimens, conducted over the previous decade. The odds ratio of 0.88 among treated patients was not significant. A year later, in response to a journal letter, two additional trials were added, and the addition of 318 cases from the two erroneously omitted trials lowered the odds ratio to 0.82; this was of borderline significance (CI, 0.68–0.98). In 1999, Earle and Maroun published a 13-trial meta-analysis of non-Asian trials published between 1980 and 1996, with a similar odds ratio for death in the treated group of 0.80 (95% CI, 0.66–0.97). In 2000, Mari et al. published a 20-article, 3,658 patient meta-analysis with an odds ratio for the treated group of 0.82, with the additional trials and patients, this was significant (95% CI, 0.75–0.98; P < 0.001). Nonetheless, even including subgroup analyses, only a few trials showed significant results favoring chemotherapy, and the authors still considered adjuvant chemotherapy as investigational. In 2002, Panzini et al., from Italy, restricted meta-analysis to those trials where all patients were treated with “radical” surgical techniques. Of the 17 papers eligible for inclusion, 3,118 patients were available for analysis. Odds ratio for death among the treated cases was 0.72 (95% CI, 0.62–0.84) and on the basis of this, a large confirmatory randomized controlled trial of cisplatin-based chemotherapy was recommended. In 2001, a less-selective, more-comprehensive, meta-analysis was conducted by the Swedish Council of Technology Assessment in Health Care (SBU) based on 135 scientific papers, 18 reviews, 60 randomized studies, and 57 prospective studies encompassing 12,367 patients. The authors’ meta-analysis of 21 randomized adjuvant studies revealed a statistically significant survival benefit with odds ratio 0.84 (95% CI, 0.74–0.96); however, analyzing Western world and Asian studies separately, a statistically significant difference was noticed: Western world studies showed an odds ratio of 0.96 (95% CI, 0.83–1.12) and the Asian studies an odds ratio of 0.58 (95% CI, 0.44–0.76). The authors concluded that adjuvant chemotherapy could not be recommended in Western patients, but that benefit in Japanese series was evident. Overall, the benefit of adjuvant therapy in all these meta-analyses equates to an odds ratio of approximately 0.80 at best. The extent of surgical resection for patients entered into these adjuvant studies, and the consequent burden of residual locoregional microscopic disease, may, as Panzini et al. suggest, be the key confounding variable. Nakajima et al., in a meta-analysis of 10 Japanese trials conducted at the Cancer Institute Hospital in Tokyo on radically treated surgical cases from 1959 to 1992 (n = 1,177 cases), noted a much better odds ratio of 0.63 favoring the treatment groups (P < 0.001).

As depicted in Table 41.7, most trials of adjuvant systemic chemotherapy versus surgery alone have been negative. For the positive trials, usually low control group survival, or findings at odds with other trials, undermine general applicability. Following the aforementioned INT-0116 adjuvant chemoradiation trial, for patients with disease resectable to
negative margins, clinical trials involving arms with only surgery or only postoperative adjuvant chemotherapy have become less feasible in the United States.272, 273 To date, no neoadjuvant preoperative chemotherapy regimen has been shown superior to postoperative therapy or surgery alone in a Phase III prospective randomized trial,312 despite promising Phase II results.312 Further, a recently reported trial of neoadjuvant FAMTX versus surgery alone showed median survival of 18 months for the treated group versus 30 months for the surgery-alone group ($P = 0.17$). On the basis of this result, the risk that neoadjuvant treatment with insufficiently effective chemotherapy might jeopardize survival must be considered.311

Advanced and Metastatic Disease

A variety of combination chemotherapy regimens have been used in the palliative management of patients with gastric cancer.313–319 Although the EAP type regimens pioneered by Preusser, Wilke, and colleagues317 led to a new era in combination chemotherapy, in which expectations of response rates in excess of 30%, and some complete tumor regressions, were possible, the EAP regimen is now utilized only rarely because of its significant toxicity.320 There are now other regimens that are widely used. The major regimens of current interest include 5-FU-directed combinations,321 infusional 5-FU regimens,37, 314, 322 and combinations containing taxanes316 and irinotecan-based regimens.315, 323

Over the past decade, there has been interest in the use of prolonged infusion of 5-FU as a part of the combination chemotherapy treatment for stomach cancer. Crookes and colleagues314 used continuous infusion 5-FU as a major component of a neoadjuvant program described below. Webb and colleagues reported important results with a combination regimen designated ECF (epirubicin, cisplatin, and 5-FU).322 Of note, ECF uses protracted infusion of 5-FU at a daily rate of 200 mg/m2 with intermittent epirubicin and cisplatinum. Epirubicin is an anthracycline analogue available in Western Europe for several years and now commercially available in

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Treatment group</th>
<th>N</th>
<th>Five-year survival</th>
<th>Median survival</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nakajima et al.299</td>
<td>1984</td>
<td>MMC + 5-FU+araC \rightarrow F</td>
<td>81</td>
<td>68%</td>
<td>>60 months</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMC + ftorafur + araC \rightarrow ftora</td>
<td>83</td>
<td>63%</td>
<td>>60 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgery alone</td>
<td>79</td>
<td>51%</td>
<td>>60 months</td>
<td></td>
</tr>
<tr>
<td>Engstrom et al.300</td>
<td>1985</td>
<td>5-FU + MeCCNU</td>
<td>91</td>
<td>—</td>
<td>36.6 months</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgery alone</td>
<td>89</td>
<td>—</td>
<td>32.7 months</td>
<td></td>
</tr>
<tr>
<td>Coombes et al.301</td>
<td>1990</td>
<td>FAM (5-FU + Adriamycin+MMC)</td>
<td>148</td>
<td>35%</td>
<td>36 months</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgery alone</td>
<td>133</td>
<td>46%</td>
<td>36 months</td>
<td></td>
</tr>
<tr>
<td>Krook et al.302</td>
<td>1991</td>
<td>5-FU + Adriamycin</td>
<td>64</td>
<td>33%</td>
<td>34 months</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgery alone</td>
<td>61</td>
<td>32%</td>
<td>36 months</td>
<td></td>
</tr>
<tr>
<td>Grau et al.293</td>
<td>1993</td>
<td>MMC</td>
<td>68</td>
<td>41%</td>
<td>—</td>
<td>0.025*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgery alone</td>
<td>66</td>
<td>26%</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Hallissey et al.303</td>
<td>1994</td>
<td>FAM</td>
<td>138</td>
<td>19%</td>
<td>17.3 months</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postoperative radiotherapy alone</td>
<td>153</td>
<td>12%</td>
<td>12.9 months</td>
<td></td>
</tr>
<tr>
<td>Macdonald et al.304</td>
<td>1995</td>
<td>FAM</td>
<td>93</td>
<td>—</td>
<td>32 months</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgery alone</td>
<td>100</td>
<td>—</td>
<td>28 months</td>
<td></td>
</tr>
<tr>
<td>Tsavaris et al.305</td>
<td>1996</td>
<td>5-FU-epirubicin-MMC (FEM)</td>
<td>42</td>
<td>—</td>
<td>64 months</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgery alone</td>
<td>42</td>
<td>—</td>
<td>81 months</td>
<td></td>
</tr>
<tr>
<td>Neri et al.295</td>
<td>1996</td>
<td>5-FU-LV-epirubicin</td>
<td>48</td>
<td>25%</td>
<td>20.4 months</td>
<td>0.01*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgery alone</td>
<td>55</td>
<td>13%</td>
<td>13.6 months</td>
<td></td>
</tr>
<tr>
<td>Grau et al.312</td>
<td>1998</td>
<td>MMC-ftorafur</td>
<td>43</td>
<td>67%</td>
<td>—</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMC</td>
<td>42</td>
<td>44%</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Nakajima et al.326</td>
<td>1999</td>
<td>MMC-5-FU-UFT</td>
<td>285</td>
<td>85.8%</td>
<td>>5 years</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgery alone</td>
<td>288</td>
<td>82.9%</td>
<td>>5 years</td>
<td></td>
</tr>
<tr>
<td>Cirera et al.304</td>
<td>1999</td>
<td>MMC-tegafur</td>
<td>76</td>
<td>56%</td>
<td>74</td>
<td>0.04*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgery alone</td>
<td>72</td>
<td>36%</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Langman et al.307</td>
<td>1999</td>
<td>Cimetidine</td>
<td>221</td>
<td>21%</td>
<td>13</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgery alone</td>
<td>221</td>
<td>18%</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Nashimoto et al.308</td>
<td>2003</td>
<td>MMC-5-FU-araC</td>
<td>126</td>
<td>91.2%</td>
<td>—</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgery alone</td>
<td>126</td>
<td>86.1%</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Chipponi et al.320</td>
<td>2004</td>
<td>5-FU-LV-CDDP</td>
<td>101</td>
<td>39%</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgery alone</td>
<td>104</td>
<td>39%</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Sato et al.310</td>
<td>2004</td>
<td>5-DFUR</td>
<td>143</td>
<td>62.9%</td>
<td>—</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-DFUR + OKT-432</td>
<td>144</td>
<td>63.8%</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Hartgrink et al.311</td>
<td>2004</td>
<td>Preop [neoadjuvant] FAMTX</td>
<td>29</td>
<td>—</td>
<td>18 months</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgery alone</td>
<td>30</td>
<td>—</td>
<td>30 months</td>
<td></td>
</tr>
</tbody>
</table>
the United States (although its approval indication is for breast cancer, not gastrointestinal cancer, in the United States). ECF was tested in a major Phase III randomized trial reported in 1997. This study compared ECF with FAMTX in patients with gastroesophageal adenocarcinoma. In this study, 274 patients with adenocarcinoma or undifferentiated cancer were randomized between FAMTX and ECF. The FAMTX regimen caused significant hematologic toxicity and was inferior in regard to response rate and survival when compared to ECF. The overall response rate for ECF was 45% versus 21% for FAMTX (P = 0.002). The median survival for ECF was 8.9 months versus 5.7 months (P = 0.0009). At 1 year, 36% of ECF and 21% of FAMTX patients were alive. Webb and colleagues also assessed global quality of life scores in this study. The global quality of life was superior for ECF at 24 weeks. This advantage in quality of life, however, did not persist as patients were followed further on the study. Of interest, Ross and colleagues performed a Phase III study of ECF versus a very similar regimen, MCF, that substituted mitomycin C (7 mg/m² every 6 weeks) for epirubicin and uses somewhat different doses of 5-FU (300 mg/m²/day × 24 weeks) and cisplatin (50 mg/m² every 3 weeks). The overall rates of survival were no different between the ECF and MCF regimens. This trial supports the use of MCF if either epirubicin is not available or a clinician would prefer not to use an anthracycline.

Other, more recent, regimens include the combination of docetaxel–cisplatin and the regimen of irinotecan–cisplatin. The irinotecan and cisplatin combination has been evaluated and shown to have good activity in gastroesophageal cancers. The response rate for adenocarcinoma with the regimen was 12 of 23 (57%), with excellent palliation of tumor-related symptoms. Another regimen of interest recently is the combination of docetaxel and cisplatin. In a European study of 85 patients with advanced gastric cancer, the overall response rate was 36%, and 7 of 85 (8%) had complete responses. The median survival in this study was 10 months, and grade IV toxicity was seen in only 4% of cases.

Data on therapy of advanced gastric cancer allow one to draw some conclusions in regard to the standard recommendations for patients with metastatic stomach cancer. It is reasonable to assume that several approaches can be considered appropriate chemotherapeutic management for patients with advanced gastric cancer. FAMTX is well tolerated and can certainly result in some complete responses in patients with gastric cancer, but it is no longer considered a front-line regimen for advanced gastric cancer (level I evidence). More promising approaches entail the use of continuous infusions of fluorinated pyrimidines, such as 5-FU. The ECF regimen, along with similar regimens using alternate anthracyclines, continue to be investigated. Finally, taxane- and irinotecan-based regimens are also of interest and appropriate for use in patients with advanced gastric cancer (level IIc data). However, it is important to stress that none of these regimens results in long-term control of metastatic adenocarcinoma of the stomach.

For a subset of cases with advanced locoregional disease followed by major response to chemotherapy, eventual R0 surgical resection is sometimes possible, and occasional long-term disease-free survival can result. It should also be noted that surgical resection of isolated hepatic metastases, before or after chemotherapy, can also result in occasional long-term disease-free survival. In general, however, although some chemotherapy regimens produce major partial responses and complete response rates as high as 15%, such responses are usually not durable.

References

65. Gammson MD, Terry MB, Arber N, et al. Nonsteroidal anti-inflammatory drug use associated with reduced incidence of adenocarcinomas of the esophagus and gastric cardia that over-

210. Dent DM, Madden MV, Price SK. Randomized comparison of
208. Miwa K. Evolution of the TNM classification of stomach cancer
207. Hundahl SA, Stemmermann GN, Oishi A. Racial factors cannot
204. de Aretxabala X, Konishi K, Yonemura Y, et al. Node dissection
202. Hutter RV. At last: worldwide agreement on the staging of
201. Bollschweiler E, Boettcher K, Hoelscher AH, et al. Is the prog-
198. Kodama Y, Kano T, Tamada R, Kumashiro R, Okamura T,
197. Kodama Y, Kano T, Tamada R, Kumashiro R, Okamura T,
196. Maruyama K, Okabayashi K, Kinoshita T. Progress in gastric
195. Maruyama K, Okabayashi K, Kinoshita T. Effects of adjuvant
192. McNeer G, Bowden L, Booner RJ, McPeak CJ. Elective total
gastrectomy for cancer of the stomach: end results. Ann Surg
dissection with disseminating peritoneal metastasis. Jpn J Surg
189. Maruyama K, Okabayashi K, Kinoshita T. Progress in gastric
188. Watanabe S, Arimoto H. Standardized mortality rates of cancer
mortality in France, West Germany, Italy, Japan, England and
186. The Third Japan-US Conference on Biostatistics in the Study
185. Robertson CS, Chung SC, Woods SD, et al. A prospective ran-
domized trial comparing R1 subtotal gastrectomy with R3 total
Calinas F. [Gastric adenocarcinoma and carcinoid.] Acta Med Port
and mortality after D1 and D2 resections for gastric cancer:
preliminary results of the MRC randomised controlled surgical
trial. The Surgical Cooperative Group. Lancet 1996;347(9007):
995–999.
dissection for gastric cancer: long-term results of the MRC
randomized surgical trial. Surgical Co-operative Group.
181. Bonenkamp JJ, van de Velde CJ, Th, van de Velde CJ, Extended
lymph-node dissection for gastric cancer. Dutch Gastric Cancer
180. Bonenkamp JJ, Songun I, Hermans J, et al. Randomised compar-
ison of morbidity after D1 and D2 dissection for gastric cancer
dissection node for gastric cancer: who may benefit? Final
results of the randomized Dutch gastric cancer group trial. J Clin
177. Maruyama K, Sasaki M, Kinoshita T, Sano T, Katai H, Okajima
K. Pancreas-preserving total gastrectomy for proximal gastric
176. Utayama I, Ogihara H, Takanashi T, et al. Spleen- and pancreas-
preserving total gastrectomy with superextended lymphadenec-
tomy including dissection of the para-aortic lymph nodes for
175. Kaminishi M, Shimoyama S, Yamaguchi H, et al. Results of
subtotal gastrectomy with complete dissection of the N2 lymph
nodes preserving the spleen and pancreas in surgery for gastric
174. Sano T. Update on D2 versus D4 trial. Presented at: 4th Inter-
national Gastric Cancer Congress, 2001, New York.
tomy in patients with advanced carcinoma of the upper-third of
1997;21(7):1005–1012.
171. Kunisaki C, Shimada H, Yamaoka H, et al. Lymph node dissec-
tion in patients with advanced gastric cancer. Jpn J Clin Oncol
node involvement in gastric adenocarcinoma.] Ann Chir 2001;

Macdonald JS, Smalley SR, Benedetti J, Hundahl SA et al. Chemoradiotherapy after surgery compared with surgery alone...

Oncology
An Evidence-Based Approach
2006, LXXII, 2012 p. In 2 volumes, not available separately., Hardcover
ISBN: 978-0-387-24291-0