This chapter provides an overview of the history of catastrophe models and their role in risk assessment and management of natural disasters. It examines the insurability of catastrophe risk and illustrates how the output from catastrophe models aids insurers in meeting their goals for risk management. Throughout the chapter, there is an emphasis on understanding catastrophe modeling for earthquake and hurricane hazards and how it is used to manage natural hazard risk. In the final section, a framework for integrating risk assessment with risk management via catastrophe modeling is presented.

2.1 History of Catastrophe Models

Catastrophe modeling is not rooted in one field or discipline. The science of assessing and managing catastrophe risk originates in the fields of property insurance and the science of natural hazards. Insurers may well argue that catastrophe modeling’s history lies in the earliest days of property insurance coverage for fire and lightning. In the 1800’s, residential insurers managed their risk by mapping the structures that they covered. Not having access to Geographic Information Systems (GIS) software, they used tacks on a wall-hung map to indicate their concentration of exposure. This crude technique served insurers well and limited their risk. Widespread usage of mapping ended in the 1960’s when it became too cumbersome and time-consuming to execute (Kozlowski and Mathewson, 1995).

On the other hand, a seismologist or meteorologist may well argue that the origin of catastrophe modeling lies in the modern science of understanding the nature and impact of natural hazards. In particular, the common practice of measuring an earthquake’s magnitude and a hurricane’s intensity is one of the key ingredients in catastrophe modeling. A standard set
of metrics for a given hazard must be established so that risks can be assessed and managed. This measurement began in the 1800’s, when the first modern seismograph (measuring earthquake ground motion) was invented and modern versions of the anemometer (measuring wind speed) gained widespread usage.

In the first part of the twentieth century, scientific measures of natural hazards advanced rapidly. By the 1970’s, studies theorizing on the source and frequency of events were published. Significant analyses include the U.S. Water Resources Council publication on flood hazard (USWRC, 1967), the Algermissen study on earthquake risk (Algermissen, 1969) and National Oceanic and Atmospheric Administration (NOAA) hurricane forecasts (Neumann, 1972). These developments led U.S. researchers to compile hazard and loss studies, estimating the impact of earthquakes, hurricanes, floods, and other natural disasters. Notable compilations include Brinkmann’s summary of hurricane hazards in the United States (1975) and Steinbrugge’s anthology of losses from earthquakes, volcanoes, and tsunamis (1982).

These two separate developments – mapping risk and measuring hazard – came together in a definitive way in the late 1980’s and early 1990’s, through catastrophe modeling as shown in Figure 2.1. Computer-based models for measuring catastrophe loss potential were developed by linking scientific studies of natural hazards’ measures and historical occurrences with advances in information technology and geographic information systems (GIS). The models provided estimates of catastrophe losses by overlaying the properties at risk with the potential natural hazard(s) sources in the geographic area. With the ability to store and manage vast amounts of spatially referenced information, GIS became an ideal environment for conducting easier and more cost-effective hazard and loss studies.

Around the same time, several new modeling firms developed computer software for analyzing the implications of natural hazard risk. Three major firms emerged: AIR Worldwide was founded in 1987 in Boston; Risk Management Solutions (RMS) was formed in 1988 at Stanford University; and EQECAT began in San Francisco in 1994 as a subsidiary of EQE International. In 2001, EQE International became a part of ABS Consulting.

When introduced, the use of catastrophe models was not widespread. In 1989, two large-scale disasters occurred that instigated a flurry of activity in the advancement and use of these models. On September 21, 1989, Hurricane Hugo hit the coast of South Carolina, devastating the towns of Charleston and Myrtle Beach. Insured loss estimates totaled $4 billion before the storm moved through North Carolina the next day (Insurance Information Institute, 2000). Less than a month later, on October 17, 1989, the Loma Prieta Earthquake occurred at the southern end of the San Francisco peninsula. Property damage to the surrounding Bay Area was estimated at $6 billion (Stover and Coffman, 1993).
These two disasters sent a warning signal to the insurance industry. On the heels of these two events, Hurricane Andrew made landfall in Southern Florida in August of 1992. Within hours of landfall, AIR Worldwide issued a fax to its clients to the effect that losses, as estimated in real time by the AIR Worldwide hurricane model, might reach the astonishing amount of $13 billion. It was not until months later that the final tally, $15.5 billion, was issued by the Property Claim Services Office.

Nine insurers became insolvent as a result of their losses from Hurricane Andrew. Insurers and reinsurers realized that, in order to remain in business, they needed to estimate and manage their natural hazard risk more precisely. Many companies turned to the modelers of catastrophe risk for decision support. The modeling companies grew and catastrophe models increased in number, availability, and capability. By 2001, other organizations joined these front-runners in developing catastrophe models for assisting insurers and reinsurers in pricing their insurance policies and determining how much coverage to offer in hazard-prone areas of the country.

The series of natural disasters in 1989 and 1992 also sent a warning signal to the public sector of the United States. The government recognized the need for an accurate assessment of the impact of disasters for mitigation and emergency planning purposes. In 1992, the Federal Emergency Management Agency (FEMA) funded a study to assess the latest loss estimation methodologies for earthquakes. The agency issued a report in 1994 on the results of this study entitled: Assessment of the State of the Art Earthquake Loss Estimation Methodologies (FEMA 249, 1994).

Figure 2.1. Development of catastrophe modeling.
This study convinced FEMA to fund the development of “Hazards U.S.” (HAZUS), a catastrophe model in the public domain. HAZUS is labeled as an open source model in Figure 2.1. From the outset, one of FEMA’s goals was to create a methodology that was the “standard national loss methodology for assessing losses from natural hazards” (FEMA, 2002). The first version of HAZUS was developed with a combination of public and private resources to estimate earthquake losses and was released in 1997 (NIBS, 1997). Updates to the HAZUS earthquake model have been in the form of data and software integration; methodologically, the software remains the same. In 2004, the latest HAZUS multi-hazard methodology, relabeled HAZUS-MH, integrates the earthquake module with two new modules for estimating potential losses from wind and flood (riverine and coastal) hazards.

2.2 Structure of Catastrophe Models

The four basic components of a catastrophe model are: hazard, inventory, vulnerability, and loss as depicted in Figure 2.2. First, the model characterizes the risk of natural hazard phenomena. For example, an earthquake hazard is characterized by its epicenter location and moment magnitude, along with other relevant parameters. A hurricane is characterized by its projected path and wind speed. The frequency of certain magnitudes or frequencies of events also describes the hazard in question.

![Figure 2.2. Structure of catastrophe models.](image)

Next, the model characterizes the inventory or portfolio of properties at risk as accurately as possible. Arguably, the most important parameter used to characterize the inventory is the location of each property at risk. A process called geocoding is normally used to assign geographic coordinates such as latitude and longitude to a property based on its street address, ZIP code or another location descriptor. With a property’s location in spatial terms, other factors that could aid in estimating the vulnerability of a property are added to its characterization. For a building, these parameters include such features as its construction type, the number of stories in the structure, and its age. If the
property is insured, information on the nature of the policy, such as the deductible and coverage limit, is also recorded.

The hazard and inventory modules enable the calculation of the vulnerability or susceptibility to damage of the structures at risk. In essence, this step in the model quantifies the physical impact of the natural hazard phenomenon on the property at risk. How this vulnerability is quantified differs from model to model. For example, the HAZUS model classifies a structure as being in a Slight, Moderate, Extensive, or Complete damage state. Other models construct damage curves and relate structural damage to a severity parameter, such as peak gust wind speed or spectral acceleration. In all models, damage curves are constructed for the building, its contents and time element losses, such as business interruption loss or relocation expenses.

From this measure of vulnerability, the loss to the inventory is evaluated. In a catastrophe model, loss is characterized as direct or indirect in nature. Direct losses include the cost to repair and/or replace a structure. Indirect losses include business interruption impacts and relocation costs of residents forced to evacuate their homes. Proprietary models include the ability to analyze insurance policies, so that the loss can be properly allocated. More details on these elements of a catastrophe model are provided in Chapter 3.

2.3 Uses of a Catastrophe Model for Risk Management

A catastrophe model is employed to assess catastrophe risk and improve risk management decisions. But how is this accomplished? Briefly, the model output is quantified and presented in a way that is useful to the stakeholder. Once these metrics are in hand, alternate risk management strategies, such as mitigation, insurance, reinsurance and catastrophe bonds, can be assessed. Currently, insurers and reinsurers are the stakeholders with the most widespread interest and integrated use of catastrophe models. Reinsurance brokers in particular have enhanced the use of catastrophe models. It is fairly common for a broker to collect data for potential clients, run the models on that data, and provide the output to interested reinsurers.

The capital markets have also been eager users of this technology in order to more accurately price catastrophe bonds. In fact, their recent interest and involvement in natural hazards have been made possible by the quantification afforded by catastrophe modeling. Property owners are less likely to use catastrophe models themselves, but their decision processes are directly or indirectly influenced by the outcomes. At the governmental level, catastrophe modeling presents both a positive opportunity and a political dilemma for regulators and emergency management agencies.

As an example of a positive use of the models, consider the use of HAZUS to measure the impact of an earthquake. One model output option is
to create a GIS map of the potential loss. Given the definition of the hazard, including the earthquake’s epicenter location, and the concentration of the properties at risk, Figure 2.3 depicts a map of the displaced households for the Charleston, South Carolina region subject to an M 7.3 earthquake. The largest concentration of loss, measured by the number of individuals seeking shelter following the disaster, is near the scenario’s epicenter. This map is potentially useful to emergency response and recovery officials responding to a disaster.

Figure 2.3. Catastrophe model output: Map of shelter requirements predicted by HAZUS for M 7.3 events in Charleston, South Carolina region.

Another output option is the exceedance probability (EP) curve. For a given portfolio of structures at risk, an EP curve is a graphical representation of the probability that a certain level of loss will be surpassed in a given time period. Special attention is given to the right-hand tail of this curve where the largest losses are situated. Figure 2.4 depicts an EP curve for an insurer with a portfolio of residential earthquake policies in Long Beach, California. In contrast to a GIS map of loss, which presents loss in a spatial manner, an exceedance probability curve portrays loss in a temporal manner.

An EP curve is particularly valuable for insurers and reinsurers to determine the size and distribution of their portfolios’ potential losses. Based on the EP curve, they can determine the types and locations of buildings they would like to insure, what coverage to offer, and what price to charge. To
keep the probability of insolvency at an acceptable level, insurers can also use an EP curve to determine what proportion of their risk needs to be transferred to either a reinsurer and/or the capital markets.

For example, suppose an insurer in Long Beach offers residential earthquake coverage and the insurer’s exceedance probability curve for its portfolio is as depicted in Figure 2.4. Further suppose the insurer specifies $10 million as an acceptable level of loss at a 1% (1-in-100) probability of exceedance. Based on the graph, it can be seen that loss profile of the current portfolio would be unacceptable since the 1-in-100 loss for the portfolio is $15 million. The insurer would need to look for ways to reduce its portfolio, transfer $5 million of loss to a reinsurer, or purchase a catastrophe bond to cover it.

![Figure 2.4.](image)

Figure 2.4. Catastrophe model output: Right-hand tail of exceedance probability curve predicted by EQECAT for all possible events.

2.4 Derivation and Use of an Exceedance Probability Curve

Given the importance of how insurers use catastrophe modeling and the EP curve to manage risk, it is essential to understand how the EP curve can be created from the loss output.

2.4.1 Generating an Exceedance Probability Curve

For the purposes of illustration, some simplifying assumptions are made to generate an EP curve. Suppose there is a set of natural disaster
events, E_i, which could damage a portfolio of structures. Each event has an annual probability of occurrence, p_i, and an associated loss, L_i. The number of events per year is not limited to one; numerous events can occur in the given year. A list of 15 such events is listed in Table 2.1, ranked in descending order of the amount of loss. In order to keep the example simple and calculations straightforward, these events were chosen so the set is exhaustive (i.e., sum of the probabilities for all of the events equals one).

The events listed in Table 2.1 are assumed to be independent Bernoulli random variables, each with a probability mass function defined as:

$$P(E_i \text{ occurs}) = p_i$$
$$P(E_i \text{ does not occur}) = (1 - p_i)$$

If an event E_i does not occur, the loss is zero. The Expected Loss for a given event, E_i, in a given year, is simply:

$$E[L] = p_i L_i$$

The overall expected loss for the entire set of events, denoted as the average annual loss (AAL) in Table 2.1, is the sum of the expected losses of each of the individual events for a given year and is given by:

$$AAL = \sum_i p_i L_i$$

Assuming that during a given year, only one disaster occurs, the exceedance probability for a given level of loss, $EP(L_i)$, can be determined by calculating:

$$EP(L_i) = P(L > L_i) = 1 - P(L \leq L_i)$$
$$EP(L_i) = 1 - \prod_{j=1}^{i} (1 - p_j)$$

The resulting exceedance probability is the annual probability that the loss exceeds a given value. As seen in the equation above, this translates into one minus the probability that all the other events below this value have not occurred. The exceedance probability curve for the events in Table 2.1 is shown in Figure 2.5. Sidebar 1 explains how the EP curve can be used to determine probable maximum loss (PML).
The exceedance probability curve illustrated in Figure 2.5 enables an insurer to determine his PML or Probable Maximum Loss for a portfolio of structures in a given time period. The term PML is a subjective risk metric and is associated with a given probability of exceedance specified by the insurer. For example, suppose that an insurer specifies its acceptable risk level as the 0.4% probability of exceedance. The insurer can use the EP curve to determine how large a loss will occur at this probability level. Often, PML limits are framed in terms of a return period. The return period is simply the inverse of the annual probability of exceedance. In this example, a 1-in-250 year PML is the lower limit on the loss at a 0.4% probability of exceedance on the EP curve. From the inset of Figure 2.5, it can be seen that the PML is approximately $21 million.

Table 2.1. Events, Losses, and Probabilities

<table>
<thead>
<tr>
<th>Event (E_i)</th>
<th>Annual probability of occurrence (p_i)</th>
<th>Loss (L_i)</th>
<th>Exceedance probability [EP(L_i)]</th>
<th>E[L] = (p_i * L_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0020</td>
<td>$25,000,000</td>
<td>0.0020</td>
<td>$50,000</td>
</tr>
<tr>
<td>2</td>
<td>0.0050</td>
<td>15,000,000</td>
<td>0.0070</td>
<td>75,000</td>
</tr>
<tr>
<td>3</td>
<td>0.0100</td>
<td>10,000,000</td>
<td>0.0169</td>
<td>100,000</td>
</tr>
<tr>
<td>4</td>
<td>0.0200</td>
<td>5,000,000</td>
<td>0.0366</td>
<td>100,000</td>
</tr>
<tr>
<td>5</td>
<td>0.0300</td>
<td>3,000,000</td>
<td>0.0655</td>
<td>90,000</td>
</tr>
<tr>
<td>6</td>
<td>0.0400</td>
<td>2,000,000</td>
<td>0.1029</td>
<td>80,000</td>
</tr>
<tr>
<td>7</td>
<td>0.0500</td>
<td>1,000,000</td>
<td>0.1477</td>
<td>50,000</td>
</tr>
<tr>
<td>8</td>
<td>0.0500</td>
<td>800,000</td>
<td>0.1903</td>
<td>40,000</td>
</tr>
<tr>
<td>9</td>
<td>0.0500</td>
<td>700,000</td>
<td>0.2308</td>
<td>35,000</td>
</tr>
<tr>
<td>10</td>
<td>0.0700</td>
<td>500,000</td>
<td>0.2847</td>
<td>35,000</td>
</tr>
<tr>
<td>11</td>
<td>0.0900</td>
<td>500,000</td>
<td>0.3490</td>
<td>45,000</td>
</tr>
<tr>
<td>12</td>
<td>0.1000</td>
<td>300,000</td>
<td>0.4141</td>
<td>30,000</td>
</tr>
<tr>
<td>13</td>
<td>0.1000</td>
<td>200,000</td>
<td>0.4727</td>
<td>20,000</td>
</tr>
<tr>
<td>14</td>
<td>0.1000</td>
<td>100,000</td>
<td>0.5255</td>
<td>10,000</td>
</tr>
<tr>
<td>15</td>
<td>0.2830</td>
<td>0</td>
<td>0.6597</td>
<td>0</td>
</tr>
</tbody>
</table>

Average Annual Loss (AAL) = $760,000
2.4.2 Stakeholders and the Exceedance Probability Curve

The exceedance probability curve can also be used to distribute the losses between stakeholders. Suppose there are three stakeholders who share the losses from a particular disaster. The owner retains the first part of the loss, a second party covers the middle portion and a third party covers the extreme portion. This scenario could represent a portfolio of homes with the homeowners having deductibles on their insurance policies such that they cover the first portion of the loss, an insurer covers the middle portion and a reinsurer handles the losses above a certain amount. Figure 2.6 shows a simple illustrative example. The potential loss for a portfolio with a total value of $100 million is split between three participants: P1, P2, and P3. The first $5 million of loss (L1) would be borne by P1 (homeowners), losses between $5M and $30M (L2) by P2 (insurer), and losses in excess of $30M (L3) by P3 (reinsurer). If the events facing the three parties were those given in Table 2.1, then the reinsurer would never experience any claim payments because the maximum loss would be $25 million.

Now suppose the three parties face the set of events in Table 2.1, but there is some uncertainty associated with the losses from each of the first 14 events (E_{15} has a loss of zero). In other words, the losses in Table 2.1 represent the mean estimates of loss; each event \(E_i \) has a distribution of loss associated with it. There is now a range of possible outcomes for each event, and some of these will penetrate the higher layer L3 (Figure 2.7). By
combining the loss distributions for all the events, the probability of exceeding a specific loss level can be calculated. This then becomes the basis for developing EP curves for each of the parties with resources at risk.

![Diagram of layering for hypothetical portfolio, total value $100 million.](image)

Figure 2.6. Layering for hypothetical portfolio, total value $100 million.

Figure 2.7 shows a set of loss-causing events with a high level of uncertainty in the loss distributions where the coefficient of variation (CV) on the event losses is 1.0.\(^1\) By definition, the coefficient of variation is the ratio of the standard deviation to the mean. The effect of this high uncertainty is clearest on L3. If there were no variability in the losses, L3 would not be affected because no event is capable of reaching a $30 million loss, as previously stated. Based on the assumption (CV = 1.0), there is an annual probability of 0.28% that an event would cause some loss to L3.

This illustrative example shows how catastrophe modeling provides a means of both quantifying risks and allocating them among stakeholders. Using these metrics, it is possible to make rational, informed decisions on how to price risks and determine how much coverage is needed based on an

\(^1\)Note that the assumption of a constant coefficient of variation for all events is not realistic and is used only for ease of illustration. The CV on the event loss generally decreases as the size of the loss increases; a portfolio CV of 1.0 for the most damaging event in this example is highly unlikely.
acceptable level of risk. However, there are uncertainties inherent in the catastrophe modeling process that can have a large impact on the distribution of risk among stakeholders. The quantification and disaggregation of uncertainty provides opportunities for stakeholders to reduce risk. As will be discussed in Part II, some of this uncertainty can be reduced by better data, but a significant component is an intrinsic part of the physical process.

Figure 2.7. Exceedance probability curves for total portfolio and individual participants.

2.5 Insurability of Catastrophe Risks

In most developed countries, insurance is one of the principal mechanisms used by individuals and organizations to manage risk. Insurance allows the payment of a relatively small premium for protection against a potentially large loss in the future. In the United States, some property insurance coverage is required by law or by the lending institution. For example, homeowners normally have to purchase fire coverage as a condition for a mortgage. Automobile liability insurance is also required in most states
as a condition for licensing a car. However, earthquake insurance is usually not required by lenders on single-family residences.

Insurance pricing can be a signal of how risky certain activities are for a particular individual. To illustrate, consider automobile insurance. For cars that are the same price, younger, inexperienced drivers of sporty vehicles pay more in premiums than older drivers of more conservative cars. For life and health insurance, smokers pay more for coverage than nonsmokers. This allocation of risk seems appropriate since it is tied to the likelihood of outcomes resulting from the nature of an individual’s lifestyle. If one individual is more susceptible to a specific risk, then the cost for coverage against a loss from that risk is greater. Of course, since insurance rates are subject to regulation, the price of the policy may not fully reflect the underlying risk.

The key challenge is how to allocate catastrophe risk among stakeholders in a manner similar to what is done for more frequent, non-extreme events. For automobile coverage, considerable historical data are available and utilized to estimate insurance premiums for individuals with different risk characteristics. The large number of data points and the absence of correlation between accidents allow the use of actuarial-based models to estimate risk (Panjer and Willmot, 1992). With respect to natural disasters, there are limited data available to determine the probabilities of events occurring and their likely outcomes. In the absence of past data, there is a need for insurers to model the risk. Catastrophe models serve this purpose by maximizing the use of available information on the risk (hazard and inventory) to estimate the potential losses from natural hazards.

2.5.1 Conditions for Insurability of a Risk

Consider a standard insurance policy whereby premiums are paid at the start of a given time period to cover losses during this interval. Two conditions must be met before insurance providers are willing to offer coverage against an uncertain event. The first condition is the ability to identify and quantify, or estimate at least partially, the chances of the event occurring and the extent of losses likely to be incurred. The second condition is the ability to set premiums for each potential customer or class of customers.

If both conditions are satisfied, a risk is considered to be insurable. But it still may not be profitable. In other words, it may be impossible to specify a rate for which there is sufficient demand and incoming revenue to cover the development, marketing, operating, and claims processing costs of the insurance and yield a net positive profit over a prespecified time horizon. In such cases, the insurer will opt not to offer coverage against this risk.

To satisfy the first condition, estimates must be made of the frequency of specific events and the likely extent of losses. Such estimates
can be based on past data or catastrophe modeling, coupled with data on what experts know about a particular risk. The insurer can then construct an exceedance probability (EP) curve that depicts the probability that a certain level of loss will be exceeded on an annual basis.

With respect to the second condition, if there is considerable ambiguity or uncertainty associated with the risk, insurers may wish to charge a much higher premium than if they had more precise estimates of the risk (Kunreuther, Hogarth and Meszaros, 1995). Moreover, if the capacity of the insurance industry is reduced due to recent large losses, then premiums will rise due to a shortage in supply. The situation will be exacerbated if the recent losses trigger an increase in demand for coverage, as was the case after Hurricane Andrew in 1992 and the Northridge earthquake in 1994 (Kunreuther and Roth, Sr. 1998).

Once the risk is estimated, the insurer needs to determine a premium rate that yields a profit and avoids an unacceptable level of loss. There are a number of factors that influence an insurer’s decision on what premium to set. State regulations often limit insurers in their rate-setting process, and competition can play a role in what may be charged in a given marketplace. Even in the absence of these influences, there are a number of issues that an insurer must consider in setting premiums: uncertainty of losses, highly correlated losses, adverse selection, and moral hazard. Neither adverse selection nor moral hazard appears to be a major problem with respect to natural hazard risks. Adverse selection occurs when the insurer cannot distinguish (or does not discriminate through price) between the expected losses for different categories of risk, while the insured, possessing information unknown to the insurer, selects a price/coverage option more favorable to the insured. Moral hazard refers to an increase in the expected loss caused by the behavior of the policyholder. One example of moral hazard is moving unwanted furniture into the basement so an impending flood can destroy it, but this behavior occurs very infrequently. Given the difficulty uncertainty of losses and highly correlated losses pose in setting premiums, they are discussed below.

2.5.2 Uncertainty of Losses

Natural disasters pose a set of challenging problems for insurers because they involve potentially high losses that are extremely uncertain. Figure 2.8 illustrates the total number of loss events from 1950 to 2000 in the United States for three prevalent hazards: earthquakes, floods, and hurricanes. Events were selected that had at least $1 billion of economic damage and/or over 50 deaths (American Re, 2002).

Looking across all the disasters of a particular type (earthquake, hurricane or flood), for this 50-year period, the median loss is low while the maximum loss is very high. Given this wide variation in loss distribution, it is
not surprising that there is a need for catastrophe models to aid insurers and reinsurers in estimating the potential loss from events that have not yet occurred but are scientifically credible.

Figure 2.8. Historical economic losses in $ billions versus type of significant U.S. natural disaster. 1950-2000 (Source: American Re)

2.5.3 Highly Correlated Losses

Natural disasters involve spatially correlated losses or the simultaneous occurrence of many losses from a single event. If insurers sell a block of residential policies in a neighborhood, they could potentially experience a large (spatially correlated) loss should a disaster occur in the region. For example, due to their high concentration of homeowners’ policies in the Miami/Dade County area of Florida, State Farm and Allstate Insurance paid $3.6 billion and $2.3 billion in claims respectively in the wake of Hurricane Andrew in 1992. Given this unexpectedly high loss, both companies began to reassess their strategies of providing coverage against wind damage in hurricane-prone areas (Lecomte and Gahagan, 1998).

In general, insurance markets flourish when companies can issue a large number of policies whose losses are spatially and otherwise independent. The portfolio follows the law of large numbers, and is thus predictable. This law states that for a series of independent and identically distributed random variables, the variance around the mean of the random variables decreases as the number of variables increases. Losses from natural hazards do not follow the law of large numbers, as they are not independent.
2.5.4 Determining Whether to Provide Coverage

In his study, James Stone (1973) sheds light on insurers’ decision rules as to when they would market coverage for a specific risk. Stone indicates that firms are interested in maximizing expected profits subject to satisfying a constraint related to the survival of the firm. He also introduces a constraint regarding the stability of the insurer’s operation. However, insurers have traditionally not focused on this constraint in dealing with catastrophic risks.

Following the disasters of 1989, insurers focused on the survival constraint in determining the amount of catastrophe coverage they wanted to provide. Moreover, insurers were caught off guard with respect to the magnitude of the losses from Hurricane Andrew in 1992 and the Northridge earthquake in 1994. In conjunction with the insolvencies that resulted from these disasters, the demand for coverage increased. Insurers only marketed coverage against wind damage in Florida because they were required to do so and state insurance pools were formed to limit their risk. Similarly, the California Earthquake Authority enabled the market to continue to offer earthquake coverage in California.

An insurer satisfies the survival constraint by choosing a portfolio of risks with an overall expected probability of insolvency less than some threshold, p_1. A simple example illustrates how an insurer would utilize the survival constraint to determine whether the earthquake risk is insurable. Assume that all homes in an earthquake-prone area are equally resistant to damage such that the insurance premium, z, is the same for each structure. Further assume that an insurer has A dollars in current surplus and wants to determine the number of policies it can write and still satisfy its survival constraint. Then, the maximum number of policies, n, satisfying the survival constraint is:

$$\text{Probability } [\text{Total Loss} > (n \cdot z + A)] < p_1$$

Whether the company will view the earthquake risk as insurable depends on whether the fixed cost of marketing and issuing policies is sufficiently low to make a positive expected profit. This, in turn, depends on how large the value of n is for any given premium, z. Note that the company also has some freedom to change its premium. A larger z will increase the values of n but will lower the demand for coverage. The insurer will decide not to offer earthquake coverage if it believes it cannot attract enough demand at any premium structure to make a positive expected profit. The company will use the survival constraint to determine the maximum number of policies it is willing to offer.

The EP curve is a useful tool for insurers to utilize in order to examine the conditions for meeting their survival constraint. Suppose that an
insurer wants to determine whether its current portfolio of properties in Long Beach is meeting the survival constraint for the earthquake hazard. Based on its current surplus and total earthquake premiums, the insurer is declared insolvent if it suffers a loss greater than $15 million. The insurer can construct an EP curve such as Figure 2.4 and examine the probability that losses exceed certain amounts. From this figure, the probability of insolvency is 1.0%. If the acceptable risk level, $p_1 < 1.0\%$, then the insurer can either decrease the amount of coverage, raise the premium and/or transfer some of the risk to others.

2.6 Framework to Integrate Risk Assessment with Risk Management

Figure 2.9 depicts a framework for integrating risk assessment with risk management and serves as a guide to the concepts and analyses presented in this book. The risk is first assessed through catastrophe modeling. Catastrophe modeling combines the four components (hazard, inventory, vulnerability, and loss) to aid insurers in making their decisions on what type of protection they can offer against a particular risk.

The key link between assessing risk via catastrophe models and implementing risk management strategies is the stakeholders’ decision processes. The types of information stakeholders collect and the nature of their decision processes are essential in developing risk management strategies. With respect to insurers, catastrophe models are the primary sources of information on the risk. Their decision rule for developing risk management strategies is to maximize expected profits subject to meeting the survival constraint. Property owners in hazard prone areas utilize simplified decision rules in determining whether or not to adopt mitigation measures to reduce future losses to their property and/or to purchase insurance.

For purposes of this book, risk management strategies are broadly classified as either risk reduction measures, such as mitigation, or risk transfer measures, such as reinsurance. For example, strategies for residential property owners often involve a combination of measures, including mitigation, insurance, well-enforced building codes, and land-use regulations. In California and Florida, all these initiatives exist in some form. Strategies for insurers could involve charging higher rates to reflect the uncertainty of the risk, changing their portfolio so they can spread the risk across many areas, or reassigning the risk using risk transfer instruments such as reinsurance and/or catastrophe bonds.
2.7 Summary and Relationship to Parts II-IV

This chapter examined the history of catastrophe modeling and the role catastrophe models play in making a risk insurable. Part II provides a more detailed discussion of catastrophe modeling for earthquakes and hurricanes. The output from catastrophe models provides important information for insurers to manage their risk. By modeling the risk, insurers can more accurately estimate the premiums to charge for insurance coverage from natural disasters. In addition, insurers and reinsurers are able to tailor their coverage to reduce the chances of insolvency. They can develop new strategies for managing their portfolios so as to avoid losses that might otherwise cause an unacceptable reduction in surplus. These strategies are discussed in Part III of the book.

The impact of insurers’ risk management strategies on profitability and probability of insolvency are explored further in Part IV of the book. Exceedance probability curves are constructed using real market data for insurers in Oakland, California, Long Beach, California and Miami/Dade County, Florida and alternative strategies are examined, including requiring mitigation to homes in these disaster-prone areas and using risk transfer instruments to satisfy an insurer’s survival constraint. The book concludes with a chapter on the future role of catastrophe models in dealing with the risks associated with terrorism as an extreme event.
2.8 References

Catastrophe Modeling
A New Approach to Managing Risk
Grossi, P.; Kunreuther, H. (Eds.)
2005, XX, 252 p. 69 illus., 4 illus. in color., Hardcover