Corrections to “Introduction to Cryptography, Second Edition”

April 11, 2005
p. 10 In the line before Example 1.7.4. replace \(a_i \) by \(\alpha_i \).

p. 29 last line of Definition 2.1.1: Delete “the” after “divides”.

p. 42 Proof of Theorem 2.9.5: Theorem 2.9.2 instead of Theorem 2.9.3 (Twice)

p. 45 Proof of Corollary 2.11.3: Theorem 2.9.2 instead of Theorem 2.9.3.

p. 59 Lemma 2.19.2: Use a “plain” \(K \).

p. 68 Exercise 2.22.12: \(d_i \) is missing in the sum.

p. 88 At the bottom the sequence reads \(c_1, c_2, ..., c_n \). The last entry should be \(c_u \) instead.

p. 93 Equation (3.3): replace \(z_{i-j} \) by \(s_{i-j} \).

p. 95 above example 3.9.3, the \(p_i \) should be \(c_i \).

p. 103 line 2 of 3.13: The name is Blaise de Vigenère.

p. 104/105 Example 3.14.1: The determinant of \(A \) is even, and so the cipher is not allowable since it is not relatively prime to \(m = 26 \). Replace FUSS replaced by FOOT.

p. 117 line 2: \(\Pr(a) \) instead of \(P(a) \).

p. 117 p. 105, line 2 of Definition 4.2.2: The “end quote” should be placed after ‘occurs’ (and not after the \(B \)).

p. 118 line 1 of Example 4.2.3: Delete “probability of the”.

p. 123 line 9 from below: \(m \) should be replaced by \(p \) (3 times).

p. 131 Figure 5.1: replace “Expansionsfunktion” by “expansion function”, “S-Boxen” by “S-boxes” and \(f(R, K) \) by \(f(K, R) \).

p. 132 In Table 5.3, description of the function \(P \) the positions for 10 and 20 must be switched.

p. 136 Replace \(f(R_0, K_1) \) by \(f(K_1, R_0) \).

p. 136 4th last and 2nd last lines of Section 5.3: In both strings, the 3rd and 16th bits (from the left) should be changed (that’s a result of the problem with the P-table).

p. 140 line 9: Those arrays have “four” rows ...x

p. 168 line 3 of Example 7.2.1: Read \(\gcd(3, 220) = 1 \). p. 145, line 3 of Example 7.2.5:

p. 171 Example 8.3.5: 119 should be replaced by 110 (twice), and 26 by 165.

p. 171 line 8 of 2nd paragraph: 1023 instead of 1024.

p. 189 line 7 of Section 8.5.4: Read \(K = A^b \mod p \).

p. 190 last line of first paragraph: Read \(g^c \equiv g^{ab} \mod p \).

p. 192 line 1: \(b \in \{0, 1, \ldots, p - 2\} \).

p. 223 In equation (10.4) \(a + \) is missing:

\[
p^{e-1}x = x_0p^{e-1} + p^e(x_1 + x_2p + \ldots + x_{e-1}p^{e-2}).
\] (0.1)

statt

\[
p^{e-1}x = x_0p^{e-1} + p^e(x_1 + x_2p + \ldots x_{e-1}p^{e-2}).
\] (0.2)

p. 244 Line 15: In the definition of SHA-1 we have

\[
C = S^{30}(B)
\]
instead of

\[C = S^{36}(B). \]

p. 279 Exercise 12.9.5: In the ElGamal signature scheme use the prime number \(p \) and the primitive root \(g \) mod \(p \). Suppose that \(p \equiv 1 \text{ mod } 4 \) and that \(g \) has only small prime factors. Let \(A \) be Alice's public key.

1. Show that a solution \(z \) of the congruence \(A^z = g^{qz} \) mod \(p \) can be found efficiently.
2. Let \(x \) be a document and let \(h \) be its hash value. Prove that \((q, (p - 3)(h - qz)/2) \) is a valid signature of \(x \).

p. 295 The correct formula for the determinant of the Vandermonde matrix is

\[
\det U = \prod_{1 \leq i < j \leq \ell} (x_j - x_i).
\]
Introduction to Cryptography
Buchmann, J.
2004, XVI, 338 p., Hardcover