Johannes A. Buchmann

Corrections to “Introduction to Cryptography, Second Edition”

April 11, 2005

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest
p. 10 In the line before Example 1.7.4. replace a_i by α_i.
p. 29 last line of Definition 2.1.1: Delete “the” after “divides”.
p. 42 Proof of Theorem 2.9.5: Theorem 2.9.2 instead of Theorem 2.9.3 (Twice)
p. 45 Proof of Corollary 2.11.3: Theorem 2.9.2 instead of Theorem 2.9.3.
p. 59 Lemma 2.19.2: Use a “plain” K.
p. 68 Exercise 2.22.12: d_i is missing in the sum.
p. 88 At the bottom the sequence reads c_1, c_2, \ldots, c_n. The last entry should be c_u instead.
p. 93 Equation (3.3): replace z_{i-j} by s_{i-j}.
p. 95 above example 3.9.3, the p_i should be c_i.
p. 103 line 2 of 3.13: The name is Blaise de Vigenère.
p. 104/105 Example 3.14.1: The determinant of A is even, and so the cipher is not allowable since it is not relatively prime to $m = 26$. Replace FUSS replaced by FOOT.
p. 117 line 2: Pr(a) instead of $P(a)$.
p. 117 p. 105, line 2 of Definition 4.2.2: The “end quote” should be placed after ‘occurs’ (and not after the B).
p. 118 line 1 of Example 4.2.3: Delete “probability of the”.
p. 123 line 9 from below: m should be replaced by p (3 times).
p. 131 Figure 5.1: replace “Expansionsfunktion” by “expansion function”, “S-Boxen” by “S-boxes” and $f(R, K)$ by $f(K, R)$.
p. 132 In Table 5.3, description of the function P the positions for 10 and 20 must be switched.
p. 136 Replace $f(R_0, K_1)$ by $f(K_1, R_0)$.
p. 136 4th last and 2nd last lines of Section 5.3: In both strings, the 3rd and 16th bits (from the left) should be changed (that’s a result of the problem with the P-table).
p. 140 line 9: Those arrays have “four” rows ...
x
p. 168 line 3 of Example 7.2.1: Read gcd$(3, 220) = 1$. p. 145, line 3 of Example 7.2.5:
p. 171 Example 8.3.5: 119 should be replaced by 110 (twice), and 26 by 165.
p. 171 line 8 of 2nd paragraph: 1023 instead of 1024.
p. 189 line 7 of Section 8.5.4: Read $K = A^b \mod p$.
p. 190 last line of first paragraph: Read $g^c \equiv g^{ab} \mod$.
p. 192 line 1: $b \in \{0, 1, \ldots, p - 2\}$.
p. 223 In equation (10.4) $a +$ is missing:
\begin{equation}
 p^{c-1}x = x_0p^{c-1} + p^c(x_1 + x_2p + \ldots + x_{c-1}p^{c-2}).
\end{equation}(0.1)
statt
\begin{equation}
 p^{c-1}x = x_0p^{c-1} + p^c(x_1 + x_2p + \ldots x_{c-1}p^{c-2}).
\end{equation}(0.2)
p. 244 Line 15: In the definition of SHA-1 we have
\begin{equation}
 C = S^{30}(B)
\end{equation}
instead of \(C = S^{36}(B) \).

p. 279 Exercise 12.9.5: In the ElGamal signature scheme use the prime number \(p \) and the primitive root \(g \mod p \). Suppose that \(p \equiv 1 \pmod{4} \) and that \(g \) has only small prime factors. Let \(A \) be Alice’s public key.

1. Show that a solution \(z \) of the congruence \(A^z = g^z \mod p \) can be found efficiently.
2. Let \(x \) be a document and let \(h \) be its hash value. Prove that \((q, (p - 3)(h - qz)/2) \) is a valid signature of \(x \).

p. 295 The correct formula for the determinant of the Vandermonde matrix is

\[
\det U = \prod_{1 \leq i < j \leq \ell} (x_j - x_i).
\]
Introduction to Cryptography
Buchmann, J.
2004, XVI, 338 p., Hardcover