Contents

Foreword vii
Preface xi

1 Brief History of Test Theory and Design 1
 1.1 Classical Test Design 2
 1.1.1 Standardized Testing in Psychology 2
 1.1.2 Classical Test Theory 4
 1.1.3 Discussion 8
 1.2 Modern Test Design 9
 1.2.1 New Notion of Standardization 9
 1.2.2 Item-Response Theory 11
 1.2.3 Item Calibration and Ability Measurement 14
 1.2.4 Test and Item Information Functions 16
 1.2.5 Test Characteristic Function 17
 1.2.6 Comparison Between Classical and IRT Parameters 19
 1.2.7 Ability Scale and Item Mapping 19
 1.2.8 Birnbaum Approach to Test Design 21
 1.3 Test Design in This Book 23
 1.3.1 Four Modes of Test Assembly 24
 1.3.2 Choice of Test Assembly Modes 26
 1.4 An Application of Integer Programming to Test Assembly 26
2 Formulating Test Specifications
2.1 Examples of Test Specifications 34
2.2 Classification of Attributes 36
2.2.1 Type of Attribute 36
2.2.2 Level of Attribute 37
2.3 Constraints and Objectives 38
2.4 Standard Form of the Set of Test Specifications 40
2.4.1 Number of Objective Functions 40
2.4.2 Number of Constraints 41
2.5 Literature ... 42
2.6 Summary .. 43
2.7 Exercises ... 44

3 Modeling Test-Assembly Problems
3.1 Identifying Decision Variables 48
3.2 Modeling Constraints 51
3.2.1 Quantitative Constraints 51
3.2.2 Categorical Constraints 55
3.2.3 Logical Constraints 59
3.2.4 Checking Constraints 61
3.3 Formulating Objective Functions 64
3.3.1 Quantitative Objective Functions 64
3.3.2 Categorical Objective Functions 66
3.3.3 Objective Functions with Goal Values 67
3.3.4 Multiobjective Test Assembly 68
3.3.5 Nonlinear Objectives 72
3.4 Literature ... 72
3.5 Summary .. 72
3.6 Exercises ... 74

4 Solving Test-Assembly Problems
4.1 Standard Model for a Single Test 78
4.1.1 Checking Interactions Between 78
4.1.1.1 the Objective Function and Constraints 80
4.2 Branch-and-Bound Search 81
4.2.1 Tree Search 82
4.2.2 Implementation Decisions 84
4.2.3 Problem Size and Solution Time 85
4.2.4 A Useful Approximation 86
4.2.5 Software ... 87
4.3 Network-Flow Approximation 87
6.2.2 Controlling Targets Through Constraints 145
6.3 Big-Shadow-Test Method 146
 6.3.1 Discussion 150
6.4 Alternative Backup Methods 151
6.5 Optimizing BIB Designs 152
6.6 Empirical Examples 155
6.7 Literature 159
6.8 Summary 161
6.9 Exercises 162

7 Models for Assembling Tests with Item Sets 165
 7.1 Simultaneous Selection of Items and Stimuli 166
 7.2 Power-Set Method 170
 7.3 Edited-Set Method 174
 7.4 Pivot-Item Method 174
 7.5 Two-Stage Method 175
 7.5.1 Stage 1: Selection of Stimuli 175
 7.5.2 Stage 2: Selection of Items from Sets 178
 7.5.3 Alternative Version 179
 7.6 Empirical Example 179
 7.7 Literature 185
 7.8 Summary 185
 7.9 Exercises 186

8 Models for Assembling Tests
Measuring Multiple Abilities 189
 8.1 Different Cases of Multidimensional Testing 190
 8.1.1 Both Abilities Intentional 190
 8.1.2 One Nuisance Ability 191
 8.1.3 Composite Ability 191
 8.1.4 Simple Structure of Multidimensional Abilities 192
 8.1.5 Simple Structure of Unidimensional Abilities 192
 8.2 Variance Functions 192
 8.3 Linearization of the Problem 194
 8.3.1 Linear Decomposition 194
 8.3.2 Linear Approximation 197
 8.4 Main Models 197
 8.4.1 Model for Relative Targets 198
 8.4.2 Model for Absolute Targets 200
 8.4.3 Applications to Different Cases 200
 8.5 Alternative Objectives 203
 for Multidimensional Test Assembly 203
 8.5.1 Matching Observed-Score Distributions 203
 8.5.2 Item Matching 204
 8.5.3 Other Generalizations of Unidimensional Problems 204
8.6 Empirical Example

Page 204

8.7 Literature

Page 207

8.8 Summary

Page 207

8.9 Exercises

Page 209

9 Models for Adaptive Test Assembly

9.1 Shadow-Test Approach

- 9.1.1 Random Test Length
- 9.1.2 Fixed Test Length
- 9.1.3 Definition of Shadow Tests
- 9.1.4 Standard Model for a Shadow Test
- 9.1.5 Calculating Shadow Tests
- 9.1.6 Empirical Example
- 9.1.7 Discussion

Page 213

9.2 Alternative Objective Functions

- 9.2.1 Kullback-Leibler Information
- 9.2.2 Bayesian Item-Selection Criteria

Page 222

9.3 Adaptive Testing with Item Sets

Page 224

9.4 Controlling Item Exposure

- 9.4.1 Alpha Stratification
- 9.4.2 Simpson-Hetter Method
- 9.4.3 Multiple-Shadow-Test Approach
- 9.4.4 Method with Ineligibility Constraints

Page 225

9.5 Controlling the Speededness of the Test

- 9.5.1 Response-Time Model
- 9.5.2 Ability and Speed as Intentional Factors
- 9.5.3 Speed as a Nuisance Factor

Page 235

9.6 Reporting Scores on a Reference Test

Page 241

9.7 Multidimensional Adaptive Test Assembly

- 9.7.1 Minimizing Error Variances
- 9.7.2 Computational Aspects
- 9.7.3 Maximizing Kullback-Leibler Information
- 9.7.4 Empirical Examples

Page 248

9.8 Final Comments

Page 253

9.9 Literature

Page 257

9.10 Summary

Page 259

9.11 Exercises

Page 261

10 Designing Item Pools for Programs with Fixed Tests

10.1 Definition of Design Space

Page 266

10.2 Programs with Parallel Forms of a Single Test

- 10.2.1 Standard Design Model

Page 268

10.3 Programs with Parallel Forms of Multiple Tests

- 10.3.1 Simultaneous Model
- 10.3.2 Item Overlap

Page 270

Page 271

Page 272
10.3.3 Model with Aggregated Bounds 275
10.3.4 Discussion 276
10.4 Cost Function 276
10.4.1 Smoothing Cost Functions 277
10.5 Item Sets 278
10.5.1 Simultaneous Model 278
10.5.2 Three-Stage Approach 281
10.6 Calculating Solutions 282
10.7 Dynamic Versions of Design Models 284
10.7.1 Dynamic Models 284
10.7.2 Item Author as Attribute 286
10.7.3 Empirical Example 287
10.8 Assembling an Operational Item Pool 290
10.9 Final Comment 291
10.10 Literature 292
10.11 Summary 293
10.12 Exercises 294

11 Designing Item Pools for Programs with Adaptive Tests 297
11.1 Programs with a Single Adaptive Test 298
11.1.1 Design Model for Shadow Tests 298
11.1.2 Blueprint without Item-Exposure Control 301
11.1.3 Blueprint with Marginal Item-Exposure Control 302
11.1.4 Blueprint with Conditional Item-Exposure Control 302
11.1.5 Empirical Example 303
11.2 Programs with Multiple Adaptive Tests 304
11.2.1 Different Tests from the Same Item Pool 304
11.2.2 Same Test from Different Item Pools 305
11.3 Item Sets 305
11.3.1 Design Model 305
11.3.2 Calculating the Blueprint 308
11.4 Calculating Shadow Tests 309
11.5 Some Remaining Topics 309
11.5.1 Stratifying an Item Pool 309
11.5.2 Empirical Example 310
11.5.3 Assembling an Item Pool as a Set of Fixed Test Forms 311
11.5.4 Empirical Example 313
11.5.5 Assembling a System of Rotating Item Pools 314
11.5.6 Empirical Example 320
11.6 Literature 323
11.7 Summary 324
11.8 Exercises 325

12 Epilogue 327
Appendix 1: Basic Concepts in Linear Programming 333
 A1.1 Mathematical Programming 333
 A1.1.1 Linear Programming 334
 A1.1.2 Nonlinear Programming 335
 A1.1.3 Other Forms of Mathematical Programming 335
 A1.1.4 Constraints on Variables 336
 A1.2 Graphical Example 337
 A1.2.1 Problem .. 337
 A1.2.2 Graphical Representation 338
 A1.2.3 Number of Solutions 340
 A1.3 Simplex Method .. 341
 A1.4 Network-Flow Problems 342
 A1.5 Solving Integer Problems 344
 A1.6 Literature ... 346

Appendix 2: Example of a Test-Assembly Problem in OPL Studio 347

Answers to Exercises 353

Bibliography 389

Index 403
Linear Models for Optimal Test Design
van der Linden, W.J.
2005, XXIV, 408 p. 44 illus., Hardcover