Contents

I Steady-State Solutions of the Navier–Stokes Equations:
 Statement of the Problem and Open Questions 1
 Introduction .. 1
 I.1 Flow in Bounded Regions 4
 I.2 Flow in Exterior Regions 8
 I.2.1 Three-Dimensional Flow 10
 I.2.2 Plane Flow .. 14
 I.3 Flow in Regions with Unbounded Boundaries 17

II Basic Function Spaces and Related Inequalities 25
 Introduction .. 25
 II.1 Preliminaries ... 25
 II.1.1 Basic Notation 26
 II.1.2 Banach Spaces and their Relevant Properties 29
 II.1.3 Spaces of Smooth Functions 35
 II.1.4 Classes of Domains and their Properties 36
 II.2 The Lebesgue Spaces \(L^q\) 40
 II.3 The Sobolev Spaces \(W^{m,q}\) and Embedding
 Inequalities .. 48
 II.4 Boundary Inequalities and the Trace of Functions
 of \(W^{m,q}\) .. 61
 II.5 Further Inequalities and Compactness Criteria
 in \(W^{m,q}\) .. 69
 II.6 The Homogeneous Sobolev Spaces \(D^{m,q}\) and Embedding
 Inequalities .. 80
 II.7 Approximation of Functions from \(D^{m,q}\) by Smooth
 Functions and Characterization of Space
 \(\tilde{D}_0^{m,q}\) ... 102
 II.8 The Normed Dual of \(D_0^{m,q}(\Omega)\). The Spaces
 \(D_0^{m,q}\) .. 109
 II.9 Pointwise behavior at Large Distances of Functions
 from \(D^{1,q}\) ... 115
 II.10 Boundary Trace of Functions from
 \(D^{m,q}(\mathbb{R}_n^+))\) 121
 II.11 Some Integral Transforms and Related Inequalities 125
 II.12 Notes for the Chapter 134
III The Function Spaces of Hydrodynamics 139
 Introduction .. 139
 III.1 The Helmholtz–Weyl Decomposition of the Space L^q 141
 III.2 Relevant Properties of the Spaces H_q and G_q 155
 III.3 The Problem $\nabla \cdot v = f$ 161
 III.4 The Spaces H^1_q .. 193
 III.4.1 Bounded Domains .. 196
 III.4.2 Exterior Domains .. 197
 III.4.3 Domains with Noncompact Boundary 198
 III.5 The Spaces $D^{1,q}_0$... 214
 III.6 Approximation Problems in Spaces H^1_q and $D^{1,q}_0$ 218
 III.7 Notes for the Chapter .. 226

IV Steady Stokes Flow in Bounded Domains 231
 Introduction .. 231
 IV.1 Generalized Solutions. Existence and Uniqueness 233
 IV.2 Existence, Uniqueness, and L^q-Estimates in the Whole Space. The Stokes Fundamental Solution 238
 IV.4 Interior L^q-Estimates ... 263
 IV.5 L^q-Estimates Near the Boundary 271
 IV.6 Existence, Uniqueness, and L^q-Estimates in a Bounded Domain ... 279
 IV.7 Existence and Uniqueness in Hölder Spaces. Schauder Estimates ... 287
 IV.8 Green’s Tensor, Green’s Identity and Representation Formulas ... 288
 IV.9 Notes for the Chapter ... 294

V Steady Stokes Flow in Exterior Domains 299
 Introduction .. 299
 V.1 Generalized Solutions. Preliminary Considerations and Regularity Properties 304
 V.2 Existence and Uniqueness of Generalized Solutions for Three-Dimensional Flow 306
 V.3 Representation of Solutions. Behavior at Large Distances and Related Results 310
 V.4 Existence, Uniqueness, and L^q-Estimates: Strong Solutions ... 320
 V.5 Existence, Uniqueness, and L^q-Estimates: q-generalized Solutions ... 337
 V.6 Green’s Tensor and Some Related Properties 349
 V.7 A Characterization of Certain Flows with Nonzero Boundary Data. Another Form of the Stokes Paradox 351
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.8</td>
<td>Further Existence and Uniqueness Results for (q)-generalized Solutions</td>
<td>354</td>
</tr>
<tr>
<td>V.9</td>
<td>Notes for the Chapter</td>
<td>362</td>
</tr>
<tr>
<td>VI</td>
<td>Steady Stokes Flow in Domains with Unbounded Boundaries</td>
<td>365</td>
</tr>
<tr>
<td>VI.1</td>
<td>Leray’s Problem: Existence, Uniqueness, and Regularity</td>
<td>370</td>
</tr>
<tr>
<td>VI.2</td>
<td>Decay Estimates for Flow in a Semi-infinite Straight Channel</td>
<td>379</td>
</tr>
<tr>
<td>VI.3</td>
<td>Flow in Unbounded Channels with Unbounded Cross Sections. Existence, Uniqueness, and Regularity</td>
<td>387</td>
</tr>
<tr>
<td>VI.4</td>
<td>Pointwise Decay of Flows in Channels with Unbounded Cross Section</td>
<td>393</td>
</tr>
<tr>
<td>VI.5</td>
<td>Existence, Uniqueness, and Asymptotic Behavior of Flow Through an Aperture</td>
<td>407</td>
</tr>
<tr>
<td>VI.6</td>
<td>Notes for the Chapter</td>
<td>415</td>
</tr>
<tr>
<td>VII</td>
<td>Steady Oseen Flow in Exterior Domains</td>
<td>417</td>
</tr>
<tr>
<td>VII.1</td>
<td>Generalized Solutions. Regularity and Uniqueness</td>
<td>420</td>
</tr>
<tr>
<td>VII.2</td>
<td>Existence of Generalized Solutions for Three-Dimensional Flow</td>
<td>424</td>
</tr>
<tr>
<td>VII.3</td>
<td>The Oseen Fundamental Solution and the Associated Volume Potentials</td>
<td>429</td>
</tr>
<tr>
<td>VII.4</td>
<td>Existence, Uniqueness, and (L^q)-Estimates in the Whole Space</td>
<td>445</td>
</tr>
<tr>
<td>VII.5</td>
<td>Existence of Generalized Solutions for Plane Flows in Exterior Domains</td>
<td>459</td>
</tr>
<tr>
<td>VII.6</td>
<td>Representation of Solutions. Behavior at Large Distances and Related Results</td>
<td>467</td>
</tr>
<tr>
<td>VII.7</td>
<td>Existence, Uniqueness, and (L^q)-Estimates in Exterior Domains</td>
<td>475</td>
</tr>
<tr>
<td>VII.8</td>
<td>Limit of Vanishing Reynolds Number. Transition to the Stokes Problem</td>
<td>487</td>
</tr>
<tr>
<td>VII.9</td>
<td>Notes for the Chapter</td>
<td>492</td>
</tr>
<tr>
<td>VIII</td>
<td>Steady Generalized Oseen Flow in Exterior Domains</td>
<td>495</td>
</tr>
<tr>
<td>VIII.1</td>
<td>Generalized Solutions. Regularity and Existence</td>
<td>499</td>
</tr>
<tr>
<td>VIII.2</td>
<td>Generalized Solutions. Uniqueness</td>
<td>505</td>
</tr>
<tr>
<td>VIII.3</td>
<td>The Fundamental Solution to the Time-Dependent Oseen Problem and Related Properties</td>
<td>514</td>
</tr>
<tr>
<td>VIII.4</td>
<td>On the Unique Solvability of the Oseen Initial-Value Problem</td>
<td>526</td>
</tr>
</tbody>
</table>
VIII.5 Existence, Uniqueness, and Pointwise Estimates of Solutions in the Whole Space 546
VIII.6 On the Pointwise Asymptotic Behavior of Generalized Solutions 554
VIII.7 Existence, Uniqueness, and L^q-Estimates. The case $R = 0$ 560
VIII.8 Existence, Uniqueness, and L^q-Estimates. The Case $R \neq 0$ 572
VIII.9 Notes for the Chapter 578

IX Steady Navier–Stokes Flow in Bounded Domains 583
Introduction ... 583
IX.1 Generalized Solutions. Preliminary Considerations 586
IX.2 On the Uniqueness of Generalized Solutions 591
IX.3 Existence and Uniqueness with Homogeneous Boundary Data .. 596
IX.4 Existence and Uniqueness with Nonhomogeneous Boundary Data 602
IX.5 Regularity of Generalized Solutions 621
IX.6 Limit of Infinite Viscosity: Transition to the Stokes Problem 640
IX.7 Notes for the Chapter 643

X Steady Navier–Stokes Flow in Three-Dimensional Exterior Domains. Irrotational Case 649
Introduction ... 649
X.1 Generalized Solutions. Preliminary Considerations and Regularity Properties 653
X.2 On the Validity of the Energy Equation for Generalized Solutions 659
X.3 Some Uniqueness Results 668
X.4 Existence of Generalized Solutions 676
X.5 On the Asymptotic Behavior of Generalized Solutions: Preliminary Results and Representation Formulas 688
X.6 Global Summability of Generalized Solutions
when $v_\infty \neq 0$.. 698
X.7 The Energy Equation and Uniqueness for Generalized Solutions when $v_\infty \neq 0$ 705
X.8 The Asymptotic Structure of Generalized Solutions
when $v_\infty \neq 0$.. 709
X.9 On the Asymptotic Structure of Generalized Solutions
when $v_\infty = 0$.. 721
X.10 Limit of Vanishing Reynolds Number: Transition to the Stokes Problem 731
X.11 Notes for the Chapter 742
XI Steady Navier–Stokes Flow in Three-Dimensional Exterior Domains. Rotational Case .. 745
Introduction .. 745
XI.1 Generalized Solutions. Existence of the Pressure and Regularity Properties 749
XI.2 On the Energy Equation and the Uniqueness of Generalized Solutions ... 755
XI.3 Existence of Generalized Solutions .. 762
XI.4 Global Summability of Generalized Solutions when $v_0 \cdot \omega \neq 0$... 770
XI.5 The Energy Equation and Uniqueness for Generalized Solutions when $v_0 \cdot \omega \neq 0$ 772
XI.6 On the Asymptotic Structure of Generalized Solutions When $v_0 \cdot \omega \neq 0$... 775
XI.7 On the Asymptotic Structure of Generalized Solutions When $v_0 \cdot \omega = 0$... 790
XI.8 Notes for the Chapter ... 795

XII Steady Navier–Stokes Flow in Two-Dimensional Exterior Domains .. 797
Introduction .. 797
XII.1 Generalized Solutions and D-Solutions .. 800
XII.2 On the Uniqueness of Generalized Solutions .. 801
XII.3 On the Asymptotic Behavior of D-Solutions .. 804
XII.4 Asymptotic Decay of the Vorticity and its Relevant Consequences ... 824
XII.5 Existence and Uniqueness of Solutions for Small Data and $v_\infty \neq 0$.. 836
XII.6 A Necessary Condition for Non-Existence with Arbitrary Large Data .. 853
XII.7 Global Summability of Generalized Solutions when $v_\infty \neq 0$... 855
XII.8 The Asymptotic Structure of Generalized Solutions when $v_\infty \neq 0$... 866
XII.9 Limit of Vanishing Reynolds Number: Transition to the Stokes Problem .. 885
XII.10 Notes for the Chapter ... 891

XIII Steady Navier–Stokes Flow in Domains with Unbounded Boundaries .. 897
Introduction .. 897
XIII.1 Leray’s Problem: Generalized Solutions and Related Properties ... 900
XIII.2 On the Uniqueness of generalized Solutions to Leray’s Problem ... 903
XIII.3 Existence and Uniqueness of Solutions to
Leray’s Problem .. 910
XIII.4 Decay Estimates for Steady Flow in a Semi–Infinite
Straight Channel .. 916
XIII.5 Flow in an Aperture Domain, Generalized Solutions and
Related Properties ... 926
XIII.6 Energy Equation and Uniqueness for Flows in an
Aperture Domain ... 930
XIII.7 Existence and Uniqueness of Flows in an
Aperture Domain ... 935
XIII.8 Global Summability of Generalized Solutions for Flow
in an Aperture Domain ... 949
XIII.9 Asymptotic Structure of Generalized Solutions for Flow
in an Aperture Domain ... 958
XIII.10 Notes for the Chapter .. 970

Bibliography .. 975

Index ... 1009