Contents

Preface and Introduction vii

1 Introduction: Applications and Issues 1
 1.0 Outline of Chapter 1
 1.1 The Robbins–Monro Algorithm 3
 1.1.1 Introduction 3
 1.1.2 Finding the Zeros of an Unknown Function 5
 1.1.3 Best Linear Least Squares Fit 8
 1.1.4 Minimization by Recursive Monte Carlo 12
 1.2 The Kiefer–Wolfowitz Procedure 14
 1.2.1 The Basic Procedure 14
 1.2.2 Random Directions 17
 1.3 Extensions of the Algorithms 19
 1.3.1 A Variance Reduction Method 19
 1.3.2 Constraints 21
 1.3.3 Averaging of the Iterates: “Polyak Averaging” . 22
 1.3.4 Averaging the Observations 22
 1.3.5 Robust Algorithms 23
 1.3.6 Nonexistence of the Derivative at Some θ 24
 1.3.7 Convex Optimization and Subgradients. 25
 1.4 A Lagrangian Algorithm for Constrained
 Function Minimization 26
2 Applications
2.0 Outline of Chapter 29
2.1 An Animal Learning Model 31
2.2 A Neural Network 34
2.3 State-Dependent Noise 37
2.4 Learning Optimal Controls 40
 2.4.1 Q-Learning 41
2.4.2 Approximating a Value Function 44
2.4.3 Parametric Optimization of a Markov Chain
 Control Problem 48
2.5 Optimization of a GI/G/1 Queue 51
 2.5.1 Derivative Estimation and Infinitesimal Perturbation
 Analysis: A Brief Review 52
2.5.2 The Derivative Estimate for the
 Queueing Problem 54
2.6 Passive Stochastic Approximation 58
2.7 Learning in Repeated Stochastic Games 59

3 Signal Processing, Communications, and Control 63
3.0 Outline of Chapter 63
3.1 Parameter Identification and Tracking 64
 3.1.1 The Classical Model 64
3.1.2 ARMA and ARMAX Models 68
3.2 Tracking Time Varying Systems 69
 3.2.1 The Algorithm 69
3.2.2 Some Data 73
3.3 Feedback and Averaging 75
3.4 Applications in Communications Theory 76
 3.4.1 Adaptive Noise Cancellation and
 Disturbance Rejection 77
3.4.2 Adaptive Equalizers 79
3.4.3 An ARMA Model, with a Training Sequence ... 80
3.5 Adaptive Antennas and Mobile Communications 83
3.6 Proportional Fair Sharing 88

4 Mathematical Background 95
4.0 Outline of Chapter 95
4.1 Martingales and Inequalities 96
4.2 Ordinary Differential Equations 101
 4.2.1 Limits of a Sequence of Continuous Functions
 101
4.2.2 Stability of Ordinary Differential Equations 104
4.3 Projected ODE 106
4.4 Cooperative Systems and Chain Recurrence 110
 4.4.1 Cooperative Systems 110
4.4.2 Chain Recurrence 110
5 Convergence w.p.1: Martingale Difference Noise
5.0 Outline of Chapter 117
5.1 Truncated Algorithms: Introduction 119
5.2 The ODE Method 125
 5.2.1 Assumptions and the Main
 Convergence Theorem 125
 5.2.2 Convergence to Chain Recurrent Points 134
5.3 A General Compactness Method 137
 5.3.1 The Basic Convergence Theorem 137
 5.3.2 Sufficient Conditions for the Rate of
 Change Condition 139
 5.3.3 The Kiefer–Wolfowitz Algorithm 142
5.4 Stability and Combined Stability–ODE Methods ... 144
 5.4.1 A Liapunov Function Method for Convergence 145
 5.4.2 Combined Stability–ODE Methods 146
5.5 Soft Constraints 150
5.6 Random Directions, Subgradients, and
 Differential Inclusions 151
5.7 Animal Learning and Pattern Classification 154
 5.7.1 The Animal Learning Problem 154
 5.7.2 The Pattern Classification Problem 156
5.8 Non-Convergence to Unstable Points 157

6 Convergence w.p.1: Correlated Noise
6.0 Outline of Chapter 161
6.1 A General Compactness Method 162
 6.1.1 Introduction and General Assumptions 162
 6.1.2 The Basic Convergence Theorem 166
 6.1.3 Local Convergence Results 169
6.2 Sufficient Conditions 170
6.3 Perturbed State Criteria 172
 6.3.1 Perturbed Iterates 172
 6.3.2 General Conditions for the Asymptotic
 Rate of Change 175
 6.3.3 Alternative Perturbations 177
6.4 Examples of State Perturbation 180
6.5 Kiefer–Wolfowitz Algorithms 183
6.6 State-Dependent Noise 185
6.7 Stability-ODE Methods 189
6.8 Differential Inclusions 195
6.9 Bounds on Escape Probabilities 197
6.10 Large Deviations 201
 6.10.1 Two-Sided Estimates 202
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1.1</td>
<td>General Comments</td>
<td>292</td>
</tr>
<tr>
<td>9.1.2</td>
<td>A Simple Illustrative SDE Example</td>
<td>294</td>
</tr>
<tr>
<td>9.2</td>
<td>A SDE Example</td>
<td>298</td>
</tr>
<tr>
<td>9.3</td>
<td>A Discrete Example: A GI/G/1 Queue</td>
<td>302</td>
</tr>
<tr>
<td>9.4</td>
<td>Signal Processing Problems</td>
<td>306</td>
</tr>
<tr>
<td>9.5</td>
<td>Proportional Fair Sharing</td>
<td>312</td>
</tr>
<tr>
<td>10</td>
<td>Rate of Convergence</td>
<td>315</td>
</tr>
<tr>
<td>10.0</td>
<td>Outline of Chapter</td>
<td>315</td>
</tr>
<tr>
<td>10.1</td>
<td>Exogenous Noise: Constant Step Size</td>
<td>317</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Martingale Difference Noise</td>
<td>317</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Correlated Noise</td>
<td>326</td>
</tr>
<tr>
<td>10.2</td>
<td>Exogenous Noise: Decreasing Step Size</td>
<td>328</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Martingale Difference Noise</td>
<td>329</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Optimal Step Size Sequence</td>
<td>331</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Correlated Noise</td>
<td>332</td>
</tr>
<tr>
<td>10.3</td>
<td>Kiefer–Wolfowitz Algorithm</td>
<td>333</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Martingale Difference Noise</td>
<td>333</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Correlated Noise</td>
<td>337</td>
</tr>
<tr>
<td>10.4</td>
<td>Tightness: W.P.1 Convergence</td>
<td>340</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Martingale Difference Noise:</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>Robbins–Monro Algorithm</td>
<td>340</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Correlated Noise</td>
<td>344</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Kiefer–Wolfowitz Algorithm</td>
<td>346</td>
</tr>
<tr>
<td>10.5</td>
<td>Tightness: Weak Convergence</td>
<td>347</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Unconstrained Algorithm</td>
<td>347</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Local Methods for Proving Tightness</td>
<td>351</td>
</tr>
<tr>
<td>10.6</td>
<td>Weak Convergence to a Wiener Process</td>
<td>353</td>
</tr>
<tr>
<td>10.7</td>
<td>Random Directions</td>
<td>358</td>
</tr>
<tr>
<td>10.7.1</td>
<td>Comparison of Algorithms</td>
<td>361</td>
</tr>
<tr>
<td>10.8</td>
<td>State-Dependent Noise</td>
<td>365</td>
</tr>
<tr>
<td>10.9</td>
<td>Limit Point on the Boundary</td>
<td>369</td>
</tr>
<tr>
<td>11</td>
<td>Averaging of the Iterates</td>
<td>373</td>
</tr>
<tr>
<td>11.0</td>
<td>Outline of Chapter</td>
<td>373</td>
</tr>
<tr>
<td>11.1</td>
<td>Minimal Window of Averaging</td>
<td>376</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Robbins–Monro Algorithm:</td>
<td>376</td>
</tr>
<tr>
<td></td>
<td>Decreasing Step Size</td>
<td>376</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Constant Step Size</td>
<td>379</td>
</tr>
<tr>
<td>11.1.3</td>
<td>Averaging with Feedback and</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>Constant Step Size</td>
<td>380</td>
</tr>
<tr>
<td>11.1.4</td>
<td>Kiefer–Wolfowitz Algorithm</td>
<td>381</td>
</tr>
<tr>
<td>11.2</td>
<td>A Two-Time-Scale Interpretation</td>
<td>382</td>
</tr>
<tr>
<td>11.3</td>
<td>Maximal Window of Averaging</td>
<td>383</td>
</tr>
<tr>
<td>11.4</td>
<td>The Parameter Identification Problem</td>
<td>391</td>
</tr>
</tbody>
</table>
Contents

12 Decentralized Algorithms 395

- 12.0 Outline of Chapter 395
- 12.1 Examples ... 397
 - 12.1.1 Introductory Comments 397
 - 12.1.2 Pipelined Computations 398
 - 12.1.3 A Distributed and Decentralized
 Network Model .. 400
 - 12.1.4 Multiaccess Communications 402
- 12.2 Real-Time Scale: Introduction 403
- 12.3 The Basic Algorithms 408
 - 12.3.1 Constant Step Size: Introduction 408
 - 12.3.2 Martingale Difference Noise 410
 - 12.3.3 Correlated Noise 417
 - 12.3.4 Analysis for $\epsilon \to 0$ and $T \to \infty$ 419
- 12.4 Decreasing Step Size 421
- 12.5 State-Dependent Noise 428
- 12.6 Rate of Convergence 430
- 12.7 Stability and Tightness of the Normalized Iterates 436
 - 12.7.1 Unconstrained Algorithms 436
- 12.8 Convergence for Q-Learning: Discounted Cost 439

References 443

Symbol Index 465

Index 469
Stochastic Approximation and Recursive Algorithms and Applications
Kushner, H.; Yin, G.
2003, XXII, 478 p., Hardcover