Preface ... vii

§0. Introduction .. 1
 1. Fixed Point Spaces ... 1
 2. Forming New Fixed Point Spaces from Old 3
 3. Topological Transversality 4
 4. Factorization Technique 6

I. Elementary Fixed Point Theorems

§1. Results Based on Completeness 9
 1. Banach Contraction Principle 9
 2. Elementary Domain Invariance 11
 3. Continuation Method for Contractive Maps 12
 5. Extensions of the Banach Theorem 15
 6. Miscellaneous Results and Examples 17
 7. Notes and Comments 23

§2. Order-Theoretic Results 25
 1. The Knaster–Tarski Theorem 25
 2. Order and Completeness. Theorem of Bishop–Phelps 26
 3. Fixed Points for Set-Valued Contractive Maps 28
 4. Applications to Geometry of Banach Spaces 29
 5. Applications to the Theory of Critical Points 30
 6. Miscellaneous Results and Examples 31
 7. Notes and Comments 34
§3. Results Based on Convexity .. 37
 1. KKM-Maps and the Geometric KKM-Principle 37
 2. Theorem of von Neumann and Systems of Inequalities 40
 3. Fixed Points of Affine Maps. Markoff–Kakutani Theorem 42
 4. Fixed Points for Families of Maps. Theorem of Kakutani 44
 5. Miscellaneous Results and Examples 46
 6. Notes and Comments ... 48

§4. Further Results and Applications 51
 1. Nonexpansive Maps in Hilbert Space 51
 2. Applications of the Banach Principle to Integral and
 Differential Equations .. 55
 3. Applications of the Elementary Domain Invariance 57
 4. Elementary KKM-Principle and its Applications 64
 5. Theorems of Mazur–Orlicz and Hahn–Banach 70
 6. Miscellaneous Results and Examples 74
 7. Notes and Comments ... 81

II. Theorem of Borsuk and Topological Transversality

§5. Theorems of Brouwer and Borsuk 85
 1. Preliminary Remarks ... 85
 2. Basic Triangulation of S^n 86
 3. A Combinatorial Lemma ... 88
 4. The Lusternik–Schnirelmann–Borsuk Theorem 90
 5. Equivalent Formulations. The Borsuk–Ulam Theorem 92
 6. Some Simple Consequences 94
 7. Brouwer’s Theorem ... 95
 8. Topological KKM-Principle 96
 9. Miscellaneous Results and Examples 98
 10. Notes and Comments ... 104

§6. Fixed Points for Compact Maps in Normed Linear Spaces 112
 1. Compact and Completely Continuous Operators 112
 2. Schauder Projection and Approximation Theorem 116
 3. Extension of the Brouwer and Borsuk Theorems 119
 4. Topological Transversality. Existence of Essential Maps 120
 5. Equation $x = F(x)$. The Leray–Schauder Principle 123
 6. Equation $x = \lambda F(x)$. Birkhoff–Kellogg Theorem 125
Contents

7. Compact Fields ... 126
8. Equation $y = x - F(x)$. Invariance of Domain 128
9. Miscellaneous Results and Examples 131
10. Notes and Comments 137

§7. Further Results and Applications 142

1. Applications of the Topological KKM-Principle 142
2. Some Applications of the Antipodal Theorem 151
3. The Schauder Theorem and Differential Equations 154
4. Topological Transversality and Differential Equations ... 156
5. Application to the Galerkin Approximation Theory 158
6. The Invariant Subspace Problem 160
7. Absolute Retracts and Generalized Schauder Theorem 162
8. Fixed Points for Set-Valued Kakutani Maps 166
9. Theorem of Ryll-Nardzewski 171
10. Miscellaneous Results and Examples 175
11. Notes and Comments 190

III. Homology and Fixed Points 197

§8. Simplicial Homology 197

1. Simplicial Complexes and Polyhedra 197
2. Subdivisions .. 200
3. Simplicial Maps and Simplicial Approximations 201
4. Vertex Schemes, Realizations, and Nerves of Coverings .. 203
5. Simplicial Homology .. 205
6. Chain Transformations and Chain Homotopies 208
7. Induced Homomorphism 212
8. Triangulated Spaces and Polytopes 214
9. Relative Homology .. 215
10. Miscellaneous Results and Examples 219
11. Notes and Comments 221

§9. The Lefschetz–Hopf Theorem and Brouwer Degree ... 223

1. Algebraic Preliminaries 223
2. The Lefschetz–Hopf Fixed Point Theorem 226
3. The Euler Number of a Map. Periodic Points 229
4. Applications .. 231
5. The Brouwer Degree of Maps $S^n \to S^n$ 234
6. Theorem of Borsuk–Hirsch 236
7. Maps of Even- and of Odd-Dimensional Spheres 237
8. Degree and Homotopy. Theorem of Hopf 239
9. Vector Fields on Spheres 241
10. Miscellaneous Results and Examples 243
11. Notes and Comments .. 245

IV. Leray–Schauder Degree and Fixed Point Index

§10. Topological Degree in R^n 249
 1. PL Maps of Polyhedra ... 250
 2. Polyhedral Domains in R^n. Degree for Generic Maps 251
 3. Local Constancy and Homotopy Invariance 254
 4. Degree for Continuous Maps 258
 5. Some Properties of Degree 260
 6. Extension to Arbitrary Open Sets 262
 7. Axiomatics ... 263
 8. The Main Theorem on the Brouwer Degree in R^n 266
 9. Extension of the Antipodal Theorem 268
10. Miscellaneous Results and Examples 270
11. Notes and Comments .. 274

§11. Absolute Neighborhood Retracts 279
 1. General Properties ... 279
 2. ARs and ANRs .. 280
 3. Local Properties ... 281
 4. Pasting ANRs Together ... 283
 5. Theorem of Hanner ... 285
 6. Homotopy Properties ... 287
 7. Generalized Leray–Schauder Principle in ANRs 289
 8. Miscellaneous Results and Examples 292
 9. Notes and Comments .. 300

§12. Fixed Point Index in ANRs 305
 1. Fixed Point Index in R^n 305
 2. Axioms for the Index .. 308
 3. The Leray–Schauder Index in Normed Linear Spaces 309
 4. Commutativity of the Index 312
 5. Fixed Point Index for Compact Maps in ANRs 315
6. The Leray–Schauder Continuation Principle in ANRs 317
7. Simple Consequences and Index Calculations 321
8. Local Index of an Isolated Fixed Point 326
9. Miscellaneous Results and Examples 329
10. Notes and Comments 333

§13. Further Results and Applications 338
1. Bifurcation Results in ANRs 338
2. Application of the Index to Nonlinear PDEs 344
3. The Leray–Schauder Degree 348
4. Extensions of the Borsuk and Borsuk–Ulam Theorems 352
5. The Leray–Schauder Index in Locally Convex Spaces 354
6. Miscellaneous Results and Applications 357
7. Notes and Comments 364

V. The Lefschetz–Hopf Theory

§14. Singular Homology 369
1. Singular Chain Complex and Homology Functors 369
2. Invariance of Homology under Barycentric Subdivision 378
3. Excision 384
4. Axiomatization 386
5. Comparison of Homologies. Künneth Theorem 391
6. Homology and Topological Degree 397
7. Miscellaneous Results and Examples 402
8. Notes and Comments 409

§15. Lefschetz Theory for Maps of ANRs 413
1. The Leray Trace 413
2. Generalized Lefschetz Number 418
3. Lefschetz Maps and Lefschetz Spaces 420
4. Lefschetz Theorem for Compact Maps of ANRs 423
5. Asymptotic Fixed Point Theorems for ANRs 425
6. Basic Classes of Locally Compact Maps 426
7. Asymptotic Lefschetz-Type Results in ANRs 429
8. Periodicity Index of a Map. Periodic Points 431
9. Miscellaneous Results and Examples 434
10. Notes and Comments 437

§16. The Hopf Index Theorem .. 441
1. Normal Fixed Points in Polyhedral Domains 441
2. Homology of Polyhedra with Attached Cones 444
3. The Hopf Index Theorem in Polyhedral Domains 447
4. The Hopf Index Theorem in Arbitrary ANRs 448
5. The Lefschetz–Hopf Fixed Point Index for ANRs 450
6. Some Consequences of the Index 451
7. Miscellaneous Results and Examples 456
8. Notes and Comments .. 458

§17. Further Results and Applications 463
1. Local Index Theory for ANRs 463
3. Forming New Lefschetz Spaces from Old by Domination 467
4. Fixed Points in Linear Topological Spaces 469
5. Fixed Points in NES(compact) Spaces 471
6. General Asymptotic Fixed Point Results 474
7*. Domination of ANRs by Polytopes 475
8. Miscellaneous Results and Examples 483
9. Notes and Comments .. 488

VI. Selected Topics

§18. Finite-Codimensional Čech Cohomology 491
1. Preliminaries ... 492
2. Continuous Functors ... 500
3. The Čech Cohomology Groups $H^{\infty-n}(X)$ 506
4. The Functor $H^{\infty-n} : (\mathcal{L}, \sim) \to \text{Ab}$ 511
5. Cohomology Theory on \mathcal{L} 513
6. Miscellaneous Results and Examples 521
7. Notes and Comments ... 523

§19. Vietoris Fractions and Coincidence Theory 531
1. Preliminary Remarks ... 531
2. Category of Fractions .. 532
3. Vietoris Maps and Fractions 534
4. Induced Homomorphisms and the Lefschetz Number 536
5. Coincidence Spaces ... 537
6. Some General Coincidence Theorems 539
7. Fixed Points for Compact and Acyclic Set-Valued Maps 542
8. Miscellaneous Results and Examples 544
9. Notes and Comments 547

§20. Further Results and Supplements 551
1. Degree for Equivariant Maps in \mathbb{R}^n 551
2. The Infinite-Dimensional E^+-Cohomology 558
3. Lefschetz Theorem for \mathcal{NB}-Maps of Compacta 565
4. Miscellaneous Results and Examples 570
5. Notes and Comments 573

Appendix: Preliminaries 588
A. Generalities ... 588
B. Topological Spaces 590
C. Linear Topological Spaces 599
D. Algebraic Preliminaries 608
E. Categories and Functors 616

Bibliography .. 620
I. General Reference Texts 620
II. Monographs, Lecture Notes, and Surveys 621
III. Articles ... 625
IV. Additional References 650

List of Standard Symbols 668
Index of Names .. 672
Index of Terms .. 678
Leopold Kronecker, 1823–1891
Jules Henri Poincaré, 1854–1912
Pierce Bohl, 1865–1921
Jacques Hadamard, 1865–1963
Luitzen Egbertus Jan Brouwer, 1881–1966
George David Birkhoff, 1884–1944
Solomon Lefschetz, 1884–1972
James Waddell Alexander, 1888–1971
Stefan Mazurkiewicz, 1888–1945
Jacob Nielsen, 1890–1959
Stefan Banach, 1892–1945
Harold Marston Morse, 1892–1977
Bronislaw Knaster, 1893–1980
Heinz Hopf, 1894–1971
Kazimierz Kuratowski, 1896–1980
Juliusz Pawel Schauder, 1899–1943
Lazar Lusternik, 1899–1981
Alfred Tarski, 1901–1983
John von Neumann, 1903–1957
Karol Borsuk, 1905–1982
Stanislaw Mazur, 1905–1981
Lev Schnirelmann, 1905–1938
Emmanuel Sperner, 1905–1980
Jean Leray, 1906–1998
Andrei Tychonoff, 1906–1993
Dean Montgomery, 1909–1992
Stanislaw Ulam, 1909–1984
Samuel Eilenberg, 1913–1998
Mark Krasnosel’skii, 1920–1997
Jürgen Moser, 1928–1999
Fixed Point Theory
Granas, A.; Dugundji, J.
2003, XVI, 690 p., Hardcover