Summary
Nikolaus Seiler, Benoit Duranton and Francis Raul
The polyamine oxidase inactivator MDL 72527

Polyamine oxidase is a FAD-dependent amine oxidase, which is constitutively expressed in nearly all tissues of the vertebrate organism. In 1985, \(N^1,N^4\)-bis(2,3-butenadienyl)-1,4-butanediamine (MDL 72527) was designed as a selective enzyme-activated irreversible inhibitor of polyamine oxidase (EC 1.5.3.11). It inactivates, at micromolar concentration and time-dependently, the enzyme in cells, as well as in all organs of experimental animals, without inhibiting other enzymes of polyamine metabolism. MDL 72527 served during nearly two decades as a unique tool in the elucidation of the physiological roles of polyamine oxidase. The compound has anticancer and contragesational effects, and it improves the anticancer effect of the ornithine decarboxylase inactivator (D,L)-2-(difluoromethyl)ornithine (DFMO). Profound depletion of the polyamine pools of tumour cells and effects on different components of the immune defence system are responsible for the anticancer effects of MDL 72527/DFMO combinations. Recently a direct cytotoxic effect of MDL 72527 at concentrations above those required for polyamine oxidase inactivation was observed. The induction of apoptosis by MDL 72527 was ascribed to its lysosomotropic properties. Therapeutic potentials of the apoptotic effect of MDL 72527 need to be explored. Polyamine oxidase is the last enzyme of the polyamine interconversion pathway that awaits the detailed elucidation of its structure and regulation. MDL 72527 should be useful as a lead in the development of inactivators which are selective for the isoforms of polyamine oxidase. Isozyme-selective inhibitors will give more profound insights into and reveal a diversity of specific functions of polyamine oxidase.

Contents
1 Introduction
2 A brief history of MDL 72527
3 FAD-dependent tissue polyamine oxidase
4 In vitro properties of MDL 72527
5 Alterations of polyamine metabolism by MDL 72527
6 MDL 72527 and tumour growth
6.1 Selective accumulation of polyamine analogues in tumours
6.2 Contragesational and anticancer effects of MDL 72527
6.3 MDL 72527 and the immune system
7 Oxidation products of polyamines
7.1 Extracellular polyamines and programmed cell death
7.2 Induction of acetylCoA:spermidine \(N^1\)-acyetyltransferase by polyamine analogues
7.3 Lesions, polyamines and amine oxidases
8 Toxic effects of MDL 72527
9 Conclusions
References

Key Words: Polyamines, putrescine, spermidine, spermine, polyamine oxidase, metabolism, MDL 72527, enzyme inhibitors, cells, cancer therapy, leukaemia, brain damage.
Summary
Zhi Hong and Craig E. Cameron
Pleiotropic mechanisms of ribavirin antiviral activities

Renewed interest in the mechanism of action of ribavirin results from its synergistic enhancement of interferon therapy and the need to develop more efficacious agents to treat hepatitis C virus infection. Since the discovery of ribavirin over 30 years ago by scientists at ICN Pharmaceuticals, many mechanisms of action for ribavirin have been proposed. These include inhibition of host inosine monophosphate dehydrogenase by ribavirin monophosphate, inhibition of viral capping enzymes, inhibition of viral RNA synthesis by ribavirin triphosphate, lethal mutagenesis of viral RNA genomes resulting from promiscuous incorporation of ribavirin triphosphate by the viral RNA polymerase, and modulation of the host immune responses. In this article, we will briefly review the evidence for these mechanisms, emphasizing recent findings. In addition, we will discuss strategies for development of nucleoside analogs that may replace ribavirin in the future.

Contents
1 Introduction
2 Evidence for direct interaction with viral RNA polymerases
3 Ribavirin as an RNA virus mutagen
3.1 Quasispecies, error threshold and error catastrophe (lethal mutagenesis)
3.2 Apparent failure of ribavirin monotherapy for treatment of HCV infection
3.3 Development of lethal mutagenesis as an antiviral strategy
4 Inhibition of host inosine monophosphate dehydrogenase
5 Immunomodulation
5.1 Antiviral cellular immunity
5.2 Evidence for immunomodulatory activities associated with ribavirin therapy
5.3 Experimental data that support ribavirin’s immunomodulatory activity
6 Ribavirin analogs: the next generation
6.1 Ribavirin prodrugs
6.1.1 5’-amino acid esters
6.1.2 Deamination
6.2 Levovirin
7 Conclusion
Acknowledgements
References

Key Words: Ribavirin, levovirin, viramidine, prodrug, deamination, antiviral therapy, nucleoside analog, RNA-dependent RNA polymerase, inosine monophosphate dehydrogenase, RNA virus, mutagen, lethal mutagenesis, quasispecies, error catastrophe, immunomodulation, poliovirus, GB virus B, hepatitis C virus.
Summary
Jie Hong Hu and Charles Krieger
Protein phosphorylation networks in motor neuron death

The disorder amyotrophic lateral sclerosis (ALS) is characterized by the death of specific groups of neurons, especially motor neurons, which innervate skeletal muscle, and neurons connecting the cerebral cortex with motor neurons, such as corticospinal tract neurons. There have been numerous attempts to elucidate why there is selective involvement of motor neurons in ALS. Recent observations have demonstrated altered activities and protein levels of diverse kinases in the brain and spinal cord of transgenic mice that overexpress a mutant superoxide dismutase (mSOD) gene that is found in patients with the familial form of ALS, as well as in patients who have died with ALS. These results suggest that the alteration of protein phosphorylation may be involved in the pathogenesis of ALS. The changes in protein kinase and phosphatase expression and activity can affect the activation of important neuronal neurotransmitter receptors such as NMDA receptors or other signaling proteins and can trigger, or modify, the process producing neuronal loss in ALS. These various kinases, phosphatases and signaling proteins are involved in many signaling pathways; however, they have close interactions with each other. Therefore, an understanding of the role of protein kinases and protein phosphatases and the molecular organization of protein phosphorylation networks are useful to determine the mechanisms of selective motor neuron death.

Contents
1 Introduction
2 Amyotrophic lateral sclerosis (ALS) and its pathogenesis
3 Protein phosphorylation and N-methyl-D-aspartate (NMDA) receptor neurotoxicity
 3.1 NMDA receptor
 3.2 NMDA receptor-interacting proteins
 3.2.1 Postsynaptic density (PSD) protein PSD-95
 3.2.2 Neuronal nitric oxide synthase (nNOS)
 3.2.3 GTPase-activating proteins (GAPs)
 3.2.4 Other proteins
 3.3 Molecular organization of NMDA receptor complex with its interacting proteins
 3.4 Protein kinase phosphorylation of the NMDA receptor
 3.4.1 Protein kinase C (PKC)
 3.4.2 Src family of non-receptor tyrosine kinases
 3.4.3 Cyclin-dependent kinase 5 (Cdk5)
 3.4.4 Ca²⁺/calmodulin-dependent kinase II (CaMKII)
 3.4.5 Other protein kinases and phosphatases
 3.5 A possible signaling model of NMDA receptor neurotoxicity
4 Alteration of protein phosphorylation in the brain and spinal cord of the mutant superoxide dismutase (mSOD) overexpressing mouse
5 Alteration of protein phosphorylation in human post mortem tissues in ALS
6 Possible protein phosphorylation networks in motor neuron death in ALS
Acknowledgements
References

Key Words: Amyotrophic lateral sclerosis, motor neuron, NMDA receptor, neurotoxicity, PSD-95, protein kinase, protein phosphatase, protein phosphorylation.
Summary
James O. Schenk
The functioning neuronal transporter for dopamine: Kinetic mechanisms and effects of amphetamines, cocaine and methylphenidate

The dopamine transporter (DAT) is a transmembrane spanning protein that catalyzes the transport of dopamine across the neuronal membrane to concentrate the neurotransmitter inside the cell. Although the uptake of dopamine has been studied since the 1960s, more recent advances in knowledge of the protein itself and in making kinetically resolved measurements of its action have led to more insights into its mechanism and pharmacology. The literature of the kinetics of transporters and kinetic measurements of DAT activity is reviewed to provide an overview of the mult-substrate mechanism of DAT activity, its pharmacology with regard to amphetamine, cocaine and methylphenidate, and correlations of DAT activity with some behavioral outputs.

Contents
1 Introduction
2 Rationale and goals
3 Summary of the molecular Properties of DAT
4 Overview of transmembrane transporter kinetics and experimental considerations for the study of DAT functioning
5 Studies of kinetic mechanisms of DAT
5.1 Experimental requirements for the study of the kinetic mechanisms and pharmacology of DAT
5.2 Results of kinetic studies of structure activity requirements at DAT
5.3 Kinetic mechanisms of DAT activity
5.4 Pharmacology revealed in the study of kinetic mechanisms of DAT
5.4.1 General considerations
5.4.2 Kinetic mechanism of DAT inhibition by amphetamine, cocaine and methylphenidate
5.4.3 Relationships between the binding sites for amphetamine, cocaine, and methylphenidate
5.4.4 Relationships between kinetic activity of DAT and behavior
6 Concluding Remarks
References

Key Words: Amphetamine, benztpine, cocaethylene, cocaine, cocaine self-administration, dopamine, dopamine transporter, rotting disk electrode voltammetry, GBR-12909, locomotor activity, mazindol, methylphenidate, nomifensine, transporter kinetics, m-tyramine.
Summary
Laszlo Prokai
Central nervous system effects of thyrotropin-releasing hormone and its analogues: opportunities and perspectives for drug discovery and development

Besides its well-known endocrine role in the thyroid system, thyrotropin-releasing hormone (L-pyroglutamyl-L-histidyl-L-prolinamide) has been long recognized as a modulatory neuropeptide. After a brief overview of the extrahypothalamic and receptor distribution, and of the neurophysiological, neuropharmacological and neurochemical effects of this triptide, this review discusses efforts devoted to enhance therapeutically beneficial central nervous system effects via structural modifications of the endogenous peptide. An enormous array of maladies affecting the brain and the spinal cord has been a potential target for therapeutic interventions involving agents derived from thyrotropin-releasing hormone as a molecular lead. Successful development of several centrally active analogues and recent accounts of efforts aimed at improving metabolic stability, selectivity and bioavailability are highlighted.

Contents
1 Introduction
2 Distribution of TRH and its receptors in the CNS
3 CNS activity of TRH: physiological, pharmacological and neurochemical effects
4 Centrally active TRH analogues
5 Conclusion
 Acknowledgement
 References

Key Words: Thyrotropin-releasing hormone, analogue, mimetic, prodrug, central nervous system, receptor, pharmacology, neurochemistry, metabolism, drug development, neurological diseases.
Summary
David F. Horrobin
A new category of psychotropic drugs: neuroactive lipids as exemplified by ethyl eicosapentaenoate (E-E)

New treatments for psychiatric disorders are urgently required. Recent reviews show that there have been no improvements in efficacy of drugs for either affective disorders or schizophrenia since the first compounds were introduced over 40 years ago. Neuroactive lipids represent an entirely novel class of psychotropic compounds. Ethyl eicosapentaenoate is the first example of this group. Placebo-controlled studies have found it to be effective in depression, in treatment-unresponsive schizophrenia and in tardive dyskinesia. It is extremely well tolerated with none of the usual side-effects of either antidepressants or neuroleptics. It probably works by modulating post-receptor signal transduction processes.

Contents
1. Introduction
2. Why has psychotropic drug development failed?
3. ethyl-eicosapentaenoate (E-E)
3.1 Chemistry and pharmacology
3.2 Biochemistry
3.3 Pharmacokinetics
3.4 Sites of action of EPA
3.4.1 EPA itself
3.4.2 EPA metabolites
3.5 Dose-response relationships and toxicology
3.6 Clinical uses
4. Depression
4.1 Background
4.2 Theory
4.3 Clinical trials
5. Schizophrenia and tardive dyskinesia
5.1 Background
5.2 Theory
5.3 Clinical trials
6. Bipolar depression
7. Huntington's disease
7.1 Background
7.2 Clinical trials
8. Conclusions and future prospects
References

Key Words: Depression, schizophrenia, bipolar disorder, tardive dyskinesia, tricyclic antidepressants, selective serotonin reuptake inhibitors (SSRIs), typical neuroleptics, atypical neuroleptics, clozapine, ethyl eicosapentaenoate (E-E), eicosapentaenoic acid (EPA), arachidonic acid (AA), docosahexaenoic acid (DHA), signal transduction, phospholipids, phospholipases, Huntington’s disease.
Summary
Suprabhat Ray, Reema Rastogi and Atul Kumar
Current status of estrogen receptors

Increasing knowledge on structure and function of estrogen receptors is providing information on mechanism of action of estrogen agonists as well as antagonists and in understanding their tissue selective action. However, there are still many factors associated with estrogen response which are poorly understood. Therefore, the task of designing a tissue selective estrogen for use as a pharmaceutical in estrogen dependent disorders, remains an uncertain game. This review provides information on the current status of estrogen receptors for a better understanding.

Contents
1 Introduction
2 Types of estrogenic response
3 The role of the ER in the development of pharmaceutical agents
4 ER localization
4.1 Nuclear-bound ER
4.2 Membrane-bound ER
5 Structure and function of the estrogen receptor
5.1 Functional domains constituting the ER
5.2 Transcriptional activation functions
5.3 Estrogen response elements
5.4 Heat shock proteins
5.5 Co-activators
5.6 Phosphorylation
5.7 Mechanism of estrogen action
6 Estrogen receptor subtypes
6.1 Role of ERα,ERβ in the mechanism of anti-estrogen action
6.2 Receptor subtype-dependent pharmacological action of anti-estrogens
7 Estrogen replacement therapy
8 Selective estrogen receptor modulators
9 Conclusion
References

Key Words: Estrogen receptors, selective estrogen receptor modulators, estrogen antagonists, hormone receptors.
Progress in Drug Research
Jucker, E. (Ed.)
2002, IX, 290 p., Hardcover
ISBN: 978-3-7643-6625-4
A product of Birkhäuser Basel