Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Physics | Control of Turbulent and Magnetohydrodynamic Channel Flows - Boundary Stabilization and State

Control of Turbulent and Magnetohydrodynamic Channel Flows

Boundary Stabilization and State Estimation

Vazquez, Rafael, Krstic, Miroslav

2008, X, 212 p.

A product of Birkhäuser Basel
Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-0-8176-4699-8

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-0-8176-4698-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • A unique "backstepping" approach is presented and extended to eliminate one of the well-recognized root causes of transition to turbulence
  • New results in fluid dynamics and the analysis of Navier-Stokes equations are presented
  • Applications to aerodynamics, chemical processes, weather forecasting, and plasma control

This monograph presents new constructive design methods for boundary stabilization and boundary estimation for several classes of benchmark problems in flow control, with potential applications to turbulence control, weather forecasting, and plasma control. The basis of the approach used in the work is the recently developed continuous backstepping method for parabolic partial differential equations, expanding the applicability of boundary controllers for flow systems from low Reynolds numbers to high Reynolds number conditions.

Efforts in flow control over the last few years have led to a wide range of developments in many different directions, but most implementable developments thus far have been obtained using discretized versions of the plant models and finite-dimensional control techniques. In contrast, the design methods examined in this book are based on the “continuum” version of the backstepping approach, applied to the PDE model of the flow. The postponement of spatial discretization until the implementation stage offers a range of numerical and analytical advantages.

Specific topics and features:

* Introduction of control and state estimation designs for flows that include thermal convection and electric conductivity, namely, flows where instability may be driven by thermal gradients and external magnetic fields.

* Application of a special "backstepping" approach where the boundary control design is combined with a particular Volterra transformation of the flow variables, which yields not only the stabilization of the flow, but also the explicit solvability of the closed-loop system.

* Presentation of a result unprecedented in fluid dynamics and in the analysis of Navier–Stokes equations: closed-form expressions for the solutions of linearized Navier–Stokes equations under feedback.

* Extension of the backstepping approach to eliminate one of the well-recognized root causes of transition to turbulence: the decoupling of the Orr–Sommerfeld and Squire systems.

Control of Turbulent and Magnetohydrodynamic Channel Flows is an excellent reference for a broad, interdisciplinary engineering and mathematics audience: control theorists, fluid mechanicists, mechanical engineers, aerospace engineers, chemical engineers, electrical engineers, applied mathematicians, as well as research and graduate students in the above areas. The book may also be used as a supplementary text for graduate courses on control of distributed-parameter systems and on flow control.


Content Level » Research

Keywords » Navier–Stokes equation - closed-loop systems - convection - design - electric conductivity - flow between co - flow control - flow stabilization - flow state estimation - fluid dynamics - partial differential equation - partial differential equations - thermal convection - turbulence - turbulent flows

Related subjects » Birkhäuser Engineering - Birkhäuser Mathematics - Birkhäuser Physics

Table of contents 

Preface Introduction Thermal-Fluid Convection Loop: Boundary Stabilization Thermal-Fluid Convection Loop: Boundary Estimation and Output-Feedback Stabilization 2D Navier–Stokes Channel Flow: Boundary Stabilization 2D Navier–Stokes Channel Flow: Boundary Estimation 3D Magnetohydrodynamic Channel Flow: Boundary Stabilization 3D Magnetohydrodynamic Channel Flow: Boundary Estimation 2D Navier–Stokes Channel Flow: Stable Flow Transfer Open Problems Bibliography Index

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Classical Continuum Physics.