Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Physics | Singularity Theory and Gravitational Lensing

Singularity Theory and Gravitational Lensing

Petters, Arlie O., Levine, Harold, Wambsganss, Joachim

2001, XXV, 603 p.

A product of Birkhäuser Basel
Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$79.99

(net) price for USA

ISBN 978-1-4612-0145-8

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$149.00

(net) price for USA

ISBN 978-0-8176-3668-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$109.00

(net) price for USA

ISBN 978-1-4612-6633-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

This monograph, unique in the literature, is the first to develop a mathematical theory of gravitational lensing. The theory applies to any finite number of deflector planes and highlights the distinctions between single and multiple plane lensing.

Introductory material in Parts I and II present historical highlights and the astrophysical aspects of the subject. Among the lensing topics discussed are multiple quasars, giant luminous arcs, Einstein rings, the detection of dark matter and planets with lensing, time delays and the age of the universe (Hubble’s constant), microlensing of stars and quasars.

The main part of the book---Part III---employs the ideas and results of singularity theory to put gravitational lensing on a rigorous mathematical foundation and solve certain key lensing problems. Results are published here for the first time.

Mathematical topics discussed: Morse theory, Whitney singularity theory, Thom catastrophe theory, Mather stability theory, Arnold singularity theory, and the Euler characteristic via projectivized rotation numbers. These tools are applied to the study of stable lens systems, local and global geometry of caustics, caustic metamorphoses, multiple lens images, lensed image magnification, magnification cross sections, and lensing by singular and nonsingular deflectors.

Examples, illustrations, bibliography and index make this a suitable text for an undergraduate/graduate course, seminar, or independent these project on gravitational lensing. The book is also an excellent reference text for professional mathematicians, mathematical physicists, astrophysicists, and physicists.

Content Level » Research

Keywords » Mathematica - geometry - gravitation - gravity - quasars - universe

Related subjects » Birkhäuser Mathematics - Birkhäuser Physics

Table of contents 

Foreword / D. Spergel * Preface * I. Introduction * 1. Historical Highlights * 2. The Central Problems * II. Astrophysical Aspects * 3. Basic Physical Concepts * 4. Physical Applications * 5. Observations of Gravitational Lensing * III. Mathematical Aspects * 6. Time Delay and Lensing Maps * 7. Critical Points and Stability * 8. Classification and Genericity of Stable Lens Systems * 9. Local Geometry of Caustics * 10. Morse Inequalities * 11. Counting Lensed Images: Single Plane Case * 12. Counting Lensed Images: Multiplane Case * 13. Magnification of Lensed Images * 14. Computing the Euler Characteristic * 15. Global Geometry of Caustics * Bibliography * Index of Notation * Index

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Mathematical Methods in Physics.