Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Mathematics | Lineare Algebra und Analytische Geometrie - Ein Lehrbuch für Physiker und Mathematiker

Lineare Algebra und Analytische Geometrie

Ein Lehrbuch für Physiker und Mathematiker

Bröcker, Theodor

2., korr. Aufl. 2004, X, 366 S.

Ein Birkhäuser Basel Produkt
Softcover
Information

Broschierte Ausgabe

Springer-Bücher können mit Visa, Mastercard, American Express, Paypal sowie auf Rechnung bezahlt werden.

Standard-Versand ist für Individualkunden kostenfrei.

(net) Preis für USA

ISBN 978-3-7643-7144-9

kostenfreier Versand für Individualkunden

gewöhnlich versandfertig in 3-5 Werktagen


add to marked items

$39.95
  • Über dieses Lehrbuch

Die mathematischen Formeln . . . Sie spielen nur mit sich selbst, driicken nichts als ihre wunderbare Natur aus, und eben darum sind sie so ausdrucksvoll - eben daruf!1, spiegelt sich in ihnen das seltsame Verhli. ltnisspielder Dinge. Die Grundbegriffe der Linearen Algebra, wie man sie zur Vorbereitung einer Vor­ lesung tiber Algebra braucht, lassen sich auf einem Dutzend Seiten vollstandig darstellen. SoIche Kiirze wird vielleicht gerade Algebraikern yom Fach besonders einleuchten. Aber auf der anderen Seite stehen Bedtirfnisse und Interessen aus der Analysis, Geometrie und Physik, die weit tiber das hinausgehen, was man in einem zweisemestrigen Kurs bewaltigen kann. Die Theorie der Liealgebren, das Studium der orthogonalen Gruppen, die Grundlagen der speziellen Relativitats­ theorie, die Ubertragung der Analysis auf Mannigfaltigkeiten und die Grundlagen der Projektiven Geometrie, - all das ist eigentlich nur Lineare Algebra. Nun ist das Buch, das ich hier vorlege, auch nicht enzyklopadisch, aber ich mochte doch Wege zeigen, die aus dem einfachen Rechenschematismus, mit dem die Lineare Algebra beginnt, in reiche, vielfiiltige, sinnvolle und anschauliche Ge­ biete fiihren. Meine Darste11ung beginnt mit sehr geringer Abstraktion. Das nullte Kapitel verlangt nur, was man auf der Schule machen kann, aber es stellt schon die Studenten der Physik (und die Kollegen) flir einige Zeit zufrieden. Auch da­ nach geht es mit der Abstraktion behutsam voran, und ich scheue mich nicht, vieles mehrfach zu behandeln, rechnerisch, algebraisch und geometrisch. Ich glaube nicht, dass man auf diese Weise Zeit verliert.

Content Level » Lower undergraduate

Stichwörter » Geometrie - Kegelschnitte - Klassische Gruppen - Lie-Theorie - Lineare Algebra - Moduln - Quadriken - Quaternionen - Ringe

Verwandte Fachbereiche » Birkhäuser Mathematik

Inhaltsverzeichnis 

0 Schulweisheiten.- § 1 Vektoren im ?n.- § 2 Das Skalarprodukt.- § 3 Komplexe Zahlen.- § 4 Das Vektorprodukt.- § 5 Aufgaben.- I Vektorräume.- § 1 Gruppen, Ringe, Körper.- § 2 Homomorphismen.- § 3 Vektorräume.- § 4 Basen.- § 5 Geometrische Anwendungen.- § 6 Aufgaben.- II Matrizenrechnung.- § 1 Zeilenumformungen.- § 2 Lineare Abbildungen.- § 3 Matrizen.- § 4 Lineare Gleichungssysteme.- § 5 Aufgaben.- III Die Determinante.- § 1 Polynome.- § 2 Definition der Determinante.- § 3 Eigenschaften einer Determinante.- § 4 Eigenwerte.- § 5 Das charakteristische Polynom.- § 6 Aufgaben.- IV Bilinearformen.- § 1 Bilinearformen und quadratische Formen.- § 2 Euklidische Räume.- § 3 Orthogonale Gruppen.- § 4 Hauptachsentransformation.- § 5 Unitäre Räume.- § 6 Aufgaben.- V Die Jordansche Normalform.- § 1 Im Komplexen.- § 2 Im Reellen.- § 3 Die Komplexifizierung.- § 4 Unitäre und normale Endomorphismen.- § 5 Die Normalform orthogonaler Matrizen.- § 6 Berechnen der Jordansehen Normalform.- § 7 Lineare Differentialgleichungen.- § 8 Die Normalformen-Tabelle.- § 9 Aufgaben.- VI Geometrie.- § 1 Flächen zweiter Ordnung.- § 2 Kegelschnitte und Regelflächen.- § 3 Der Projektive Raum.- § 4 Projektivitäten.- § 5 Projektive Dualität.- § 6 Homogene Gleichungen.- § 7 Affine Hauptachsentransformation.- § 8 Der topologische Typ der Quadriken.- § 9 Bewegungen.- § 10 Quadriken und ihre Gleichungen.- § 11 Aufgaben.- VII Tensorrechnung.- § 1 Kategorien und Funktoren.- § 2 Das Tensorprodukt von Vektorräumen.- § 3 Alternierende Formen.- § 4 Die äußere Algebra.- § 5 Aufgaben.- VIII Lineare Gruppen und Liealgebren.- § 1 Gruppenoperationen.- § 2 Gruppen.- § 3 Affine Räume.- § 4 Gaußelimination.- § 5 Iwasawa-Zerlegung, Polarzerlegung, Jordan-Chevalley-Zerlegung.- § 6 Exponentialfunktion und Logarithmus.- § 7 Liealgebren.- § 8 Die adjungierte Darstellung.- § 9 Aufgaben.- IX Quaternionen und orthogonale Gruppen.- § 1 Die Gruppe SO(3) und ihre Liealgebra.- § 2 Quaternionen.- § 3 Die Gruppen SU(2), SO(3) und SO(4).- § 4 Die symplektischen Gruppen.- § 5 Die Lorentzgruppe.- § 6 Kausalität und die Lorentzgruppe.- § 7 Aufgaben.- X Ringe und Moduln.- § 1 Ringe.- § 2 Polynomringe.- § 3 Symmetrische Polynome.- § 4 Potenzreihen und symmetrische Polynome.- § 5 Endomorphismen und symmetrische Polynome.- § 6 Interpolation und der erste Zerlegungssatz.- § 7 Der Quotientenkörper.- § 8 Moduln.- § 9 Matrizen über Ringen.- § 10 Hauptidealringe.- § 11 Moduln über Hauptidealringen.- § 12 Anwendungen des Elementarteilersatzes.- § 13 Der charakteristische Endomorphismus.- § 14 Aufgaben.- Literatur.

Beliebte Inhalte dieser Publikation 

 

Articles

Service für dieses Buch

Neuerscheinungen

Registrieren Sie sich hier wenn Sie regelmäßig Informationen über neue Bücher erhalten wollen im Fachbereich Algebra.