Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Mathematics | Elliptic Curves, Hilbert Modular Forms and Galois Deformations

Elliptic Curves, Hilbert Modular Forms and Galois Deformations

Berger, L., Böckle, G., Dembélé, L., Dimitrov, M., Dokchitser, T., Voight, J.

2013, XII, 249 p. 11 illus., 2 illus. in color.

A product of Birkhäuser Basel
Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-3-0348-0618-3

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-0348-0617-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • The book contains the first published notes on the recent developments and major changes in Galois deformation theory during the last decade (deformations of pseudo-representations, framed deformations, groupoids, etc.)
  • A survey on the parity conjecture is presented
  • Computational aspects of Hilbert modular forms are presented by the people responsible for the most powerful and widely spread algorithms available

The notes in this volume correspond to advanced courses held at the Centre de Recerca Matemàtica as part of the research program in Arithmetic Geometry in the 2009-2010 academic year.

The notes by Laurent Berger provide an introduction to p-adic Galois representations and Fontaine rings, which are especially useful for describing many local deformation rings at p that arise naturally in Galois deformation theory.

The notes by Gebhard Böckle offer a comprehensive course on Galois deformation theory, starting from the foundational results of Mazur and discussing in detail the theory of pseudo-representations and their deformations, local deformations at places l ≠ p and local deformations at p which are flat. In the last section,the results of Böckle and Kisin on presentations of global deformation rings over local ones are discussed.

The notes by Mladen Dimitrov present the basics of the arithmetic theory of Hilbert modular forms and varieties, with an emphasis on the study of the images of the attached Galois representations, on modularity lifting theorems over totally real number fields, and on the cohomology of Hilbert modular varieties with integral coefficients.

 The notes by Lassina Dembélé and John Voight describe methods for performing explicit computations in spaces of Hilbert modular forms. These methods depend on the Jacquet-Langlands correspondence and on computations in spaces of quaternionic modular forms, both for the case of definite and indefinite quaternion algebras. Several examples are given, and applications to modularity of Galois representations are discussed.

 The notes by Tim Dokchitser describe the proof, obtained by the author in a joint project with Vladimir Dokchitser, of the parity conjecture for elliptic curves over number fields under the assumption of finiteness of the Tate-Shafarevich group. The statement of the Birch and Swinnerton-Dyer conjecture is included, as well as a detailed study of local and global root numbers of elliptic curves and their classification.

Content Level » Graduate

Keywords » Galois representations - Hilbert modular forms - elliptic curves

Related subjects » Birkhäuser Mathematics

Table of contents 

Part I: Galois Deformations.- On p-adic Galois Representations.- Deformations of Galois Representations.- Part II: Hilbert Modular Forms.- Arithmetic Aspects of Hilbert Modular Forms and Varieties.- Explicit Methods for Hilbert Modular Forms.- Part III: Elliptic Curves.- Notes on the Parity Conjecture.​

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Number Theory.